scispace - formally typeset
BookDOI

Sensory biology of aquatic animals

W. N. McFarland, +4 more
- 01 Jan 1988 - 
- Vol. 1989, Iss: 2, pp 525
Reads0
Chats0
TLDR
This volume constitutes a series of invited chapters based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held June 24-28, 1985 at the Mote Marine Laboratory in Sarasota, Florida.
Abstract
This volume constitutes a series of invited chapters based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held June 24-28, 1985 at the Mote Marine Laboratory in Sarasota, Florida. The immediate purpose of the conference was to spark an exchange of ideas, concepts, and techniques among investigators concerned with the different sensory modalities employed by a wide variety of animal species in extracting information from the aquatic environment. By necessity, most investigators of sensory biology are specialists in one sensory system: different stimulus modalities require different methods of stimulus control and, generally, different animal models. Yet, it is clear that all sensory systems have principles in common, such as stimulus filtering by peripheral structures, tuning of receptor cells, signal-to-noise ratios, adaption and disadaptation, and effective dynamic range. Other features, such as hormonal and efferent neural control, circadian reorganization, and receptor recycling are known in some and not in other senses. The conference afforded an increased awareness of new discoveries in other sensory systems that has effectively inspired a fresh look by the various participants at their own area of specialization to see whether or not similar principles apply. This inspiration was found not only in theoretical issues, but equally in techniques and methods of approach. The myopy of sensory specialization was broken in one unexpected way by showing limitations of individual sense organs and their integration within each organism. For instance, studying vision, one generally chooses a visual animal as a model.

read more

Citations
More filters
Journal ArticleDOI

Expectancy controlled sampling decisions in Vimba elongata

TL;DR: It is concluded that zährte's searching decisions, apart from incorporating external information on prey occurrence, are controlled by internal expectations of long term benefits derived from sampling.
Journal ArticleDOI

Two modes of information processing in the electrosensory system of the paddlefish (Polyodon spathula).

TL;DR: The existence of two distinct channels for electrosensory information processing: one for proximal signals via the anterior DON and one for distant stimuli via the posterior DON with the sensory input fed into the appropriate ascending channels based on the relative sensitivity of both cell populations.
Journal ArticleDOI

Chambered nautilus (Nautilus pompilius pompilius) responds to underwater vibrations

TL;DR: It is found that nautiluses do indeed respond to underwater acoustical stimuli, decreasing their ventilation in the presence of a vibratory stimulus.
Dissertation

The role of melatonin and the pineal gland in the photoperiodic control of reproduction and smoltification in Salmonid fish

Mark Porter
TL;DR: The role of the pineal gland in the perception of the photoperiodic zeitgeber and the subsequent transmission of information to the brain through neural or hormonal pathways is investigated.
Book ChapterDOI

Electroreceptors and Magnetoreceptors

TL;DR: In two groups of teleost fishes, both ampullary and tuberous electroreceptors evolved, the latter specialized for the detection of actively generated electric organ discharges, or EODs.
References
More filters
Journal ArticleDOI

Evolution of the telencephalon in nonmammals.

TL;DR: The relatively sophisticated armamentarium of neurobiological tech­ niques available today allows us to establish more accurately the anatomy of the telencephalon; these data, data from the fossil record, and a more sophisticated view of vertebrate phylogeny allow us to propose and test new hypotheses regarding the evolution of the vertebrate telencesphalon.
Journal ArticleDOI

Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes.

TL;DR: It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.
Journal ArticleDOI

Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus.

TL;DR: Extrinsic and intrinsic fiber connections of the telencephalic subdivisions of Nieuwenhuys (1962) in a teleost, Sebastiscus marmoratus, were studied by means of horseradish peroxidase (HRP) and Fink‐Heimer methods.
Journal ArticleDOI

LHRH systems in the brain of platyfish

TL;DR: The Luteinizing hormone-releasing hormone (LHRH) system of the platyfish Xiphophorus has been studied using immunohistochemistry and retrograde transport of horseradish peroxidase (HRP) as discussed by the authors.