scispace - formally typeset
BookDOI

Sensory biology of aquatic animals

W. N. McFarland, +4 more
- 01 Jan 1988 - 
- Vol. 1989, Iss: 2, pp 525
Reads0
Chats0
TLDR
This volume constitutes a series of invited chapters based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held June 24-28, 1985 at the Mote Marine Laboratory in Sarasota, Florida.
Abstract
This volume constitutes a series of invited chapters based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held June 24-28, 1985 at the Mote Marine Laboratory in Sarasota, Florida. The immediate purpose of the conference was to spark an exchange of ideas, concepts, and techniques among investigators concerned with the different sensory modalities employed by a wide variety of animal species in extracting information from the aquatic environment. By necessity, most investigators of sensory biology are specialists in one sensory system: different stimulus modalities require different methods of stimulus control and, generally, different animal models. Yet, it is clear that all sensory systems have principles in common, such as stimulus filtering by peripheral structures, tuning of receptor cells, signal-to-noise ratios, adaption and disadaptation, and effective dynamic range. Other features, such as hormonal and efferent neural control, circadian reorganization, and receptor recycling are known in some and not in other senses. The conference afforded an increased awareness of new discoveries in other sensory systems that has effectively inspired a fresh look by the various participants at their own area of specialization to see whether or not similar principles apply. This inspiration was found not only in theoretical issues, but equally in techniques and methods of approach. The myopy of sensory specialization was broken in one unexpected way by showing limitations of individual sense organs and their integration within each organism. For instance, studying vision, one generally chooses a visual animal as a model.

read more

Citations
More filters
Journal ArticleDOI

Avoidance conditioning in bamboo sharks ( Chiloscyllium griseum and C. punctatum ): behavioral and neuroanatomical aspects

TL;DR: This study investigated whether elasmobranchs (Chiloscyllium griseum and C. punctatum) can be conditioned in an aversive classical conditioning paradigm to reveal if the neural substrates governing avoidance behavior or tasks learned in a classical conditioned paradigm are located within the telencephalon, as has been shown for teleosts such as goldfish.
Journal ArticleDOI

Detection without deflection? A hypothesis for direct sensing of sound pressure by hair cells

TL;DR: Here, a model is constructed of the outer hair cell as a pressure vessel able to sense pressure variations across its cuticular pore, and this ‘fontanelle’ model, based on the sensing action of the basal body at this compliant spot, could explain the observed anomalies.
Book ChapterDOI

Rhopalium development in Aurelia aurita ephyrae

TL;DR: Although newly released ephyrae lack a touch plate, the MR cells in their rhopalia along with the statocyst and neuromuscular system apparently enable these organisms to detect and respond to gravity.
Book ChapterDOI

The Fish Lateral Line: How to Detect Hydrodynamic Stimuli

TL;DR: A functional subdivision similar to that in the periphery can be found in the brainstem suggesting that to a large degree information from superficial and canal neuromasts, respectively, is processed separately at least at the first stage of central nervous integration.
References
More filters
Journal ArticleDOI

Evolution of the telencephalon in nonmammals.

TL;DR: The relatively sophisticated armamentarium of neurobiological tech­ niques available today allows us to establish more accurately the anatomy of the telencephalon; these data, data from the fossil record, and a more sophisticated view of vertebrate phylogeny allow us to propose and test new hypotheses regarding the evolution of the vertebrate telencesphalon.
Journal ArticleDOI

Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes.

TL;DR: It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.
Journal ArticleDOI

Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus.

TL;DR: Extrinsic and intrinsic fiber connections of the telencephalic subdivisions of Nieuwenhuys (1962) in a teleost, Sebastiscus marmoratus, were studied by means of horseradish peroxidase (HRP) and Fink‐Heimer methods.
Journal ArticleDOI

LHRH systems in the brain of platyfish

TL;DR: The Luteinizing hormone-releasing hormone (LHRH) system of the platyfish Xiphophorus has been studied using immunohistochemistry and retrograde transport of horseradish peroxidase (HRP) as discussed by the authors.