scispace - formally typeset
Open AccessPosted Content

Simplifying Graph Convolutional Networks

TLDR
In this paper, the authors reduce the complexity of GCN by successively removing nonlinearities and collapsing weight matrices between consecutive layers, which corresponds to a fixed low-pass filter followed by a linear classifier.
Abstract
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

read more

Citations
More filters
Posted Content

Graph Neural Networks: A Review of Methods and Applications

TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Posted Content

Fast Graph Representation Learning with PyTorch Geometric

Matthias Fey, +1 more
- 06 Mar 2019 - 
TL;DR: PyTorch Geometric is introduced, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch, and a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios is performed.
Journal ArticleDOI

Graph Neural Networks: A Review of Methods and Applications

TL;DR: In this paper, the authors propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
Posted Content

Open Graph Benchmark: Datasets for Machine Learning on Graphs

TL;DR: The OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs, indicating fruitful opportunities for future research.
Posted Content

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation

TL;DR: This work proposes a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation -- for collaborative filtering, and is much easier to implement and train, exhibiting substantial improvements over Neural Graph Collaborative Filtering (NGCF) under exactly the same experimental setting.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Journal ArticleDOI

WordNet: a lexical database for English

TL;DR: WordNet1 provides a more effective combination of traditional lexicographic information and modern computing, and is an online lexical database designed for use under program control.
Proceedings ArticleDOI

A Combined Corner and Edge Detector

TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Related Papers (5)