scispace - formally typeset
Journal ArticleDOI

Smoothed particle hydrodynamics.

Reads0
Chats0
TLDR
In this paper, the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed, focusing on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.
Abstract
In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.

read more

Citations
More filters
Journal ArticleDOI

The Cosmological simulation code GADGET-2

TL;DR: GADGET-2 as mentioned in this paper is a massively parallel tree-SPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics.
Journal ArticleDOI

Smoothed particle hydrodynamics

TL;DR: In this article, the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed, focusing on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.
Journal ArticleDOI

Meshless methods: An overview and recent developments

TL;DR: Meshless approximations based on moving least-squares, kernels, and partitions of unity are examined and it is shown that the three methods are in most cases identical except for the important fact that partitions ofunity enable p-adaptivity to be achieved.
Journal ArticleDOI

Modelling feedback from stars and black holes in galaxy mergers

TL;DR: In this paper, a coarse-grained representation of the properties of the interstellar medium (ISM) and BH accretion starting from basic physical assumptions is proposed to incorporate feedback from star formation and black hole accretion into simulations of isolated and merging galaxies.
Journal ArticleDOI

Modeling feedback from stars and black holes in galaxy mergers

TL;DR: In this paper, a coarse-grained representation of the properties of the interstellar medium and black hole accretion starting from basic physical assumptions is proposed, and the impact of these effects can be included on resolved scales.
Related Papers (5)