scispace - formally typeset
Journal ArticleDOI

The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives

Reads0
Chats0
TLDR
In this paper, the tris(triphenylphosphine) complexes are exceedingly active catalysts for the rapid and homogeneous hydrogenation, at ca. 1 atmosphere of hydrogen pressure and room temperature, of unsaturated compounds containing isolated olefinic and acetylenic linkages.
Abstract
Tris(triphenylphosphine)chlororhodium(I), RhCl(PPh3)3, has been prepared by the interaction of an excess of triphenylphosphine with rhodium(III) chloride hydrate in ethanol; the corresponding bromide and iodide are also described. The dissociation of the complex in various solvents has been investigated, and its reactions with hydrogen, ethylene, and carbon monoxide and aldehydes studied. Dihydrido- and ethylene complexes have been isolated and studied by nuclear magnetic resonance (n.m.r.) spectroscopy. Approximate values for the formation constants of ethylene and propylene complexes have been obtained; the latter is lower by a factor of over 103. By electron spin resonance spectroscopy, the complex RhCl(PPh3)3 has been shown to contain trace amounts of a paramagnetic species, probably a rhodium(II) complex.In homogeneous solution the tris(triphenylphosphine) complexes are exceedingly active catalysts for the rapid and homogeneous hydrogenation, at ca. 1 atmosphere of hydrogen pressure and room temperature, of unsaturated compounds containing isolated olefinic and acetylenic linkages.The rates of hydrogenation of hept-1-ene, cyclohexene and hex-1-yne have been studied quantitatively and the dependence on factors such as substrate and catalyst concentration, temperature, and pressure determined. The data can be accommodated by a rate expression of the form: Rate =Kp[S][A]//1 +K1p+K2[S] where [S] and [A] are the olefin and catalyst concentrations, respectively, and p is the concentration of hydrogen in solution.From the data for cyclohexene the activation energy for the rate determining step is Ea= 22·9 kcal. mole–1(ΔH‡= 22·3 kcal. mole–1) and the value of ΔS‡= 12·9 e.u.It is shown that the rate of hydrogen–deuterium exchange under selected conditions is quite slow compared with the rates of hydrogenation of olefins and, furthermore, that when H2–D2 mixtures are used in the reactions, alkanes and dideuteroalkanes are the major products. Reductions of maleic and fumaric acids with deuterium shows that cis-addition occurs preferentially. Similarly, in the reduction of hex-2-yne to n-hexane, cis-hex-2-ene is found to be the major olefin intermediate.A mechanism for the hydrogenation is proposed in which the metal complex serves as a template to which a hydrogen molecule and an olefin molecule are briefly co-ordinated before transfer of one to the other takes place. The low kinetic isotope effect (rate H2/rate D2= 0·9) suggests that synchronous breaking of Rh–H bonds and making of C–H bonds takes place in the transition state involving two simultaneous three-centre interactions.

read more

Citations
More filters
Journal ArticleDOI

Mechanistic Investigations on Hydrogenation, Isomerization and Hydrosilylation Reactions Mediated by a Germyl‐Rhodium System

TL;DR: In this paper , the authors investigated the catalytic applications of this Rh/Ge system in several transformations, namely trans-semihydrogenation of internal alkynes, trans-isomerization of olefins and hydrosilylation of alkynes.
Journal ArticleDOI

Gas-liquid reactors with volatile liquid reactants: approximate solution for consecutive bimolecular reactions of general order

TL;DR: In this paper, an approximate solution of the film model in the presence of volatile liquid reactants is presented for the case of a general van de Vusse-like reaction scheme and general power-law reaction rates.
Journal ArticleDOI

31P NMR spectroscopic study of the structures of mixed-hydride complexes of rhodium with triphenylphosphine and d-α-methylbenzylamine, homogeneous asymmetric hydrogenation catalysts

TL;DR: The methods of 31P-{1H}NMR spectroscopy have been used to determine the structures of hydride and non-hydride complexes of rhodium with triphenylphosphine and d-α-methylbenzyl-amine as discussed by the authors.
Book ChapterDOI

Application of Organometallic Compounds in Homogeneous Catalysis

TL;DR: The term catalysis was introduced by Berzelius in 1835, and some catalytic processes date back to the beginning of the 19th century, for example, combustion of hydrogen in the presence of platinum or breakdown of many organic compounds by acids as mentioned in this paper.
Related Papers (5)