scispace - formally typeset
Journal ArticleDOI

Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching.

Guangjiu Zhao, +1 more
- 04 Jul 2007 - 
- Vol. 111, Iss: 38, pp 9218-9223
Reads0
Chats0
TLDR
It is demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex, which can be used to explain well all the spectral features of fluore None chromophore in alcoholic solvents.
Abstract
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state hydrogen-bonding dynamics of fluorenone (FN) in hydrogen donating methanol (MeOH) solvent. The infrared spectra of the hydrogen-bonded FN-MeOH complex in both the ground state and the electronically excited states are calculated using the TDDFT method, since the ultrafast hydrogen-bonding dynamics can be investigated by monitoring the vibrational absorption spectra of some hydrogen-bonded groups in different electronic states. We demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex. The hydrogen bond strengthening in electronically excited states can be used to explain well all the spectral features of fluorenone chromophore in alcoholic solvents. Furthermore, the radiationless deactivation via internal conversion (IC) can be facilitated by the hydrogen bond strengthening in the excited state. At the same time, quantum yields of the excited-state deactivation via fluorescence are correspondingly decreased. Therefore, the total fluorescence of fluorenone in polar protic solvents can be drastically quenched by hydrogen bonding.

read more

Citations
More filters
Journal ArticleDOI

The dual-luminescence mechanism of the ESIPT chemosensor tetrasubstituted imidazole core compound: a TDDFT study

TL;DR: The dual-luminescence mechanism of the tetrasubstituted imidazole core (TIC) compound was theoretically explored by considering the excited-state intramolecular proton transfer (ESIPT) process in the present study.
Journal ArticleDOI

A recognition mechanism study: Luminescent metal-organic framework for the detection of nitro-explosives.

TL;DR: The calculated results collectively suggest that LMOF-1 is a potential fluorescence sensor for the detection of nitro-explosives.
Journal ArticleDOI

Molecular structure, conformational stability, energetic and intramolecular hydrogen bonding in ground, and electronic excited state of 3-mercapto propeneselenal

TL;DR: In this paper, a conformational analysis of 3-mercapto propeneselenal is performed using several computational methods, including DFT (B3LYP), MP2, and G2MP2.
Journal ArticleDOI

Excited-State Hydrogen and Dihydrogen Bonding of a Dihydrogen-Bonded Phenol-Borane-Dimethylamine Complex

TL;DR: In this paper, the excited-state hydrogen and dihydrogen bonding of a di-hydrogen-bonded phenol-borane-dimethylamine (BDMA) complex was investigated theoretically by use of time-dependent density functional theory.
Journal ArticleDOI

Excited-State Hydrogen Bonding Strengthening and Weakening with Intramolecular Charge Transfer in Resorufin-Water Complexes: A TD-DFT Study

TL;DR: In this paper, the geometric structures, infrared spectra and hydrogen bond binding energies of various hydrogen-bonded Res−-water complexes in states S0 and S1 have been calculated using the density functional theory (DFT) and time-dependent density functional theories (TD-DFT), respectively.
References
More filters
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr

TL;DR: In this article, a triple zeta valence (TZV) basis set is presented for Li to Kr. The TZV bases are characterized by typically including a single contraction to describe inner shells and three basis functions for valence shells.
Journal ArticleDOI

Electronic structure calculations on workstation computers: the program system turbomole

TL;DR: TURBOMOLE as discussed by the authors is a program system for SCF that takes full advantage of all discrete point group symmetries and has only modest I/O and background storage requirements.
Journal ArticleDOI

Efficient molecular numerical integration schemes

TL;DR: In this article, a new mapping for radial integration of the Gauss-Chebyshev type was proposed, which seems to surpass in accuracy the existing integration schemes as proposed by Becke [J. Phys. Chem. Lett. 88, 2547 (1988), Murray et al. [Mol. Phys., Lett., this article ] or Gill et al [Chem. Phys.
Journal ArticleDOI

Adiabatic time-dependent density functional methods for excited state properties

TL;DR: In this paper, the authors present theory, implementation, and validation of excited state properties obtained from time-dependent density functional theory (TDDFT), based on a fully variational expression for the excited state energy, a compact derivation of first order properties is given.
Related Papers (5)