scispace - formally typeset
Journal ArticleDOI

Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching.

Guangjiu Zhao, +1 more
- 04 Jul 2007 - 
- Vol. 111, Iss: 38, pp 9218-9223
Reads0
Chats0
TLDR
It is demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex, which can be used to explain well all the spectral features of fluore None chromophore in alcoholic solvents.
Abstract
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state hydrogen-bonding dynamics of fluorenone (FN) in hydrogen donating methanol (MeOH) solvent. The infrared spectra of the hydrogen-bonded FN-MeOH complex in both the ground state and the electronically excited states are calculated using the TDDFT method, since the ultrafast hydrogen-bonding dynamics can be investigated by monitoring the vibrational absorption spectra of some hydrogen-bonded groups in different electronic states. We demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex. The hydrogen bond strengthening in electronically excited states can be used to explain well all the spectral features of fluorenone chromophore in alcoholic solvents. Furthermore, the radiationless deactivation via internal conversion (IC) can be facilitated by the hydrogen bond strengthening in the excited state. At the same time, quantum yields of the excited-state deactivation via fluorescence are correspondingly decreased. Therefore, the total fluorescence of fluorenone in polar protic solvents can be drastically quenched by hydrogen bonding.

read more

Citations
More filters
Journal ArticleDOI

Reconsideration on hydrogen bond strengthening or cleavage of photoexcited coumarin 102 in aqueous solvent: a DFT/TDDFT study.

TL;DR: It is confirmed again that intermolecular hydrogen bonds between C102 chromophore and aqueous solvents are strengthened not cleaved upon electronic excitation, which is in accordance with Zhao's works.
Journal ArticleDOI

Hydrogen bond design principles.

TL;DR: This overview features a discussion relating molecular structure to hydrogen bond strengths, highlighting the following electronic effects on hydrogen bonding: electronegativity, steric effects, electrostatic effects, π‐conjugation, and network cooperativity.
Journal ArticleDOI

Wagging motion of hydrogen-bonded wire in the excited-state multiple proton transfer process of 7-hydroxyquinoline·(NH3)3 cluster

TL;DR: An excited-state multiple proton transfer (ESMPT) mechanism containing two concerted and asymmetrical processes has been proposed for the protontransfer dynamics of 7HQ·(NH3)3 cluster.
Journal ArticleDOI

Theoretical study on ESIPT mechanism of 2-acetylindan-1,3-dione in hexane and acetonitrile solvents

TL;DR: In this article, the authors investigated the compared excited-state intramolecular proton transfer (ESIPT) mechanism of 2-acetylindan-1,3-dione (AID) in both non-polar (hexane) and polar (acetonitrile) solvents theoretically.
Journal ArticleDOI

Straightforward Stepwise Excited State Dual Proton Transfer Mechanism for 9-10-HBQ System

Jin-Dou Huang
TL;DR: A new molecule 9,10-dihydroxybenzo[h] quinoline is focused in the present work about its excited state proton transfer mechanism and it is found that the ultrafast ESPT process could occur in the S1 state without potential energy barrier along with hydrogen bond O3-H4···N5 forming 9-10-HBQ-PT1 structure.
References
More filters
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr

TL;DR: In this article, a triple zeta valence (TZV) basis set is presented for Li to Kr. The TZV bases are characterized by typically including a single contraction to describe inner shells and three basis functions for valence shells.
Journal ArticleDOI

Electronic structure calculations on workstation computers: the program system turbomole

TL;DR: TURBOMOLE as discussed by the authors is a program system for SCF that takes full advantage of all discrete point group symmetries and has only modest I/O and background storage requirements.
Journal ArticleDOI

Efficient molecular numerical integration schemes

TL;DR: In this article, a new mapping for radial integration of the Gauss-Chebyshev type was proposed, which seems to surpass in accuracy the existing integration schemes as proposed by Becke [J. Phys. Chem. Lett. 88, 2547 (1988), Murray et al. [Mol. Phys., Lett., this article ] or Gill et al [Chem. Phys.
Journal ArticleDOI

Adiabatic time-dependent density functional methods for excited state properties

TL;DR: In this paper, the authors present theory, implementation, and validation of excited state properties obtained from time-dependent density functional theory (TDDFT), based on a fully variational expression for the excited state energy, a compact derivation of first order properties is given.
Related Papers (5)