scispace - formally typeset
Search or ask a question

Showing papers on "ATP transport published in 2001"


Journal ArticleDOI
TL;DR: This study investigated the mechanism of ATP release in human HOBIT osteoblastic cells, in which mechanical stimulation induced intercellular calcium waves sustained by both cell-to-cell coupling through gap junctions and ATP release.

169 citations


Journal ArticleDOI
TL;DR: Accumulating gel electrophoretic evidence suggests that the cystic fibrosis transmembrane conductance regulator (CFTR) and the multidrug resistance-associated protein (MRP1), respectively, constitute significant proteins in the red blood cell membrane.
Abstract: In addition to the better-known roles of the erythrocyte in the transport of oxygen and carbon dioxide, the concept that the red blood cell is involved in the transport and release of ATP has been evolving (J. Luthje, Blut 59, 367, 1989; G. R. Bergfeld and T. Forrester, Cardiovasc. Res. 26, 40, 1992; M. L. Ellsworth et al., Am. J. Physiol. 269, H2155, 1995; R. S. Sprague et al., Am. J. Physiol. 275, H1726, 1998). Membrane proteins involved in the release of ATP from erythrocytes now appear to include members of the ATP binding cassette (ABC) family (C. F. Higgins, Annu. Rev. Cell Biol. 8, 67, 1992; C. F. Higgins, Cell 82, 693, 1995). In addition to defining physiologically the presence of ABC proteins in RBCs, accumulating gel electrophoretic evidence suggests that the cystic fibrosis transmembrane conductance regulator (CFTR) and the multidrug resistance-associated protein (MRP1), respectively, constitute significant proteins in the red blood cell membrane. As such, this finding makes the mature erythrocyte compartment a major mammalian repository of these important ABC proteins. Because of its relative structural simplicity and ready accessibility, the erythrocyte offers an ideal system to explore details of the physiological functions of ABC proteins. Moreover, the presence of different ABC proteins in a single membrane implies that interaction among these proteins and with other membrane proteins may be the norm and not the exception in terms of modulation of their functions.

64 citations


Journal ArticleDOI
TL;DR: MDR1 is not likely to function as an ATP channel, but instead serves as a potent regulator of other cellular ATP transport pathways, as shown in whole-cell patch-clamp recordings and intracellular dialysis recordings.
Abstract: The mechanisms responsible for regulating epithelial ATP permeability and purinergic signaling are not well defined. Based on the observations that members of the ATP-binding cassette (ABC)1 family of proteins may contribute to ATP release, the purpose of these studies was to assess whether multidrug resistance-1 (MDR1) proteins are involved in ATP release from HTC hepatoma cells. Using a bioluminescence assay to detect extracellular ATP, increases in cell volume increased ATP release ∼3-fold. The MDR1 inhibitors cyclosporine A (10 μm) and verapramil (10 μm) inhibited ATP release by 69% and 62%, respectively (p < 0.001). Similarly, in whole-cell patch-clamp recordings, intracellular dialysis with C219 antibodies to inhibit MDR1 decreased ATP-dependent volume-sensitive Cl− current density from −33.1 ± 12.5 pA/pF to −2.0 ± 0.3 pA/pF (−80 mV, p≤ 0.02). In contrast, overexpression of MDR1 in NIH 3T3 cells increased ATP release rates. Inhibition of ATP release by Gd3+ had no effect on transport of the MDR1 substrate rhodamine-123; and alteration of MDR1-substrate selectivity by mutation of G185 to V185 had no effect on ATP release. Since the effects of P-glycoproteins on ATP release can be dissociated from P-glycoprotein substrate transport, MDR1 is not likely to function as an ATP channel, but instead serves as a potent regulator of other cellular ATP transport pathways.

61 citations


Journal ArticleDOI
TL;DR: This work introduces the AAC from Neurospora crassa in E. coli, where it is accumulated in inclusion bodies and establish the reconstitution conditions and attribution of the roles of these residues more to ADP/ATP transport or to AAC import into mitochondria.

53 citations


Journal ArticleDOI
TL;DR: The complexity of the saturation curve indicates the existence of kinetic and allosteric cooperativity in the nucleotide transport, which exhibits various affinity states with K0.5 values of 0.06 and 3.8 ± 0.1 mM with ε‐ATP as substrate.
Abstract: ATP transport to synaptic vesicles from rat brain has been studied using the fluorescent substrate analogue 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP). The increase in intravesicular concentration was time dependent for the first 30 min, epsilon-ATP being the most abundant nucleotide. The complexity of the saturation curve indicates the existence of kinetic and allosteric cooperativity in the nucleotide transport, which exhibits various affinity states with K0.5 values of 0.39 +/- 0.06 and 3.8 +/- 0.1 mM with epsilon-ATP as substrate. The Vmax values obtained were 13.5 +/- 1.4 pmol x min(-1) x mg of protein(-1) for the first curve and 28.3 +/- 1.6 pmol x min(-1) x mg of protein(-1) considering both components. This kinetic behavior can be explained on the basis of a mnemonic model. The nonhydrolyzable adenine nucleotide analogues adenosine 5'-O-3-(thiotriphosphate), adenosine 5'-O-2-(thiodiphosphate), and adenosine 5'-(beta,gamma-imino)triphosphate and the diadenosine polyphosphates P1,P3-di(adenosine)triphosphate, P1,P4-di(adenosine)tetraphosphate, and P1,P5-di(adenosine)pentaphosphate inhibited the nucleotide transport. The mitochondrial ATP/ADP exchange inhibitor atractyloside, N-ethylmaleimide, and polysulfonic aromatic compounds such as Evans blue and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid also inhibit epsilon-ATP vesicular transport.

51 citations


Journal ArticleDOI
TL;DR: Evidence for the movement of cellular nucleotides by the ABC transporter CFTR and related molecules, including P-glycoproteins (Pgp), is reviewed and data indicating that reconstitution of highly purified CFTR from human epithelial origin enables the permeation of both Cl and ATP is included.
Abstract: The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the superfamily of ATP-binding cassette (ABC) transporters, also known as traffic ATPases. Recent studies from our laboratory determined that various members of the ABC family of transport proteins mediate the electrodiffusional movement of the nucleotide ATP. In this report, evidence for the movement of cellular nucleotides by the ABC transporter CFTR and related molecules, including P-glycoproteins (Pgp), is reviewed. The wild-type mdr1 gene product, Pgp, enables the spontaneous release of cellular ATP. However, single amino acid substitutions in both nucleotide-binding sites render a dysfunctional Pgp, whose function can only be reversed by voltage activation. This report includes data indicating that reconstitution of highly purified CFTR from human epithelial origin enables the permeation of both Cl and ATP. The relevance of the ABC domains in ATP transport is also explored, and the hypothesis is forwarded that improper ATP transport by a dysfunctional CFTR is a relevant factor in cystic fibrosis.

43 citations


Journal ArticleDOI
TL;DR: Fusion proteins consisting of two tandem covalent-linked AAC monomers are generated and the kinetics of ADP/ATP transport in reconstituted proteoliposomes are studied to favor a single binding center gated pore model.

30 citations


Journal ArticleDOI
TL;DR: The results are compatible with the view that substrates for Pgp efflux are driven by the movement of ATP through electrostatic interaction and effective ATP-drug complex formation with net anionic character, and provide a framework for understanding the role of erythrocytes in drug resistance.
Abstract: ABSTRACT P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated with the expression of Pgp are in any way coupled. We have measured the stoichiometry of transport coupling between drug and ATP release. The drug and ATP transport that is inhibitable by the sulfonylurea compound, glyburide (P. E. Golstein, A. Boom, J. van Geffel, P. Jacobs, B. Masereel, and R. Beauwens, Pfluger's Arch. 437, 652, 1999), permits determination of the transport coupling ratio, which is close to 1:1. In view of this result, we asked whether ATP interacts directly with Pgp substrates. We show by measuring the movement of Pgp substrates in electric fields that ATP and drug movement are coupled. The results are compatible with the view that substrates for Pgp efflux are driven by the movement of ATP through electrostatic interaction and effective ATP–drug complex formation with net anionic character. This mechanism not only pertains to drug efflux from tumor cells overexpressing Pgp, but also provides a framework for understanding the role of erythrocytes in drug resistance. The erythrocyte consists of a membrane surrounding a millimolar pool of ATP. Mammalian RBCs have no nucleus or DNA drug/toxin targets. From the perspective of drug/ATP complex formation, the RBC serves as an important electrochemical sink for toxins. The presence in the erythrocyte membrane of approximately 100 Pgp copies per RBC provides a mechanism for eventual toxin clearance. The RBC transport of toxins permits their removal from sensitive structures and ultimate clearance from the organism via the liver and/or kidneys.

21 citations


Journal ArticleDOI
TL;DR: Analysis of healthy and pathological muscle samples, and characterization of ADP/ATP carrier deficiencies in two patients, one displaying an absence of the carrier and the second one containing a limited amount of the carriers with altered binding properties are described.

8 citations