scispace - formally typeset
Search or ask a question

Showing papers on "ATP transport published in 2012"


Journal ArticleDOI
TL;DR: A novel MCF member, termed Legionella nucleotide carrier Protein (LncP), was discovered encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease, andstrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncF as an ATP transporter.
Abstract: The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

101 citations


Journal ArticleDOI
TL;DR: Two individual computational models based on in vivo and in vitro studies are described which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions.
Abstract: Integration of the numerous mechanisms that have been suggested to contribute to optimization of O2 supply to meet O2 need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in vitro studies which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions. Healthy human erythrocytes exposed to low O2 tension release ATP via a well characterized signaling pathway requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release via pannexin 1. A critical control point in this pathway is the level of cAMP which is regulated by pathway-specific phosphodiesterases. Using time constants (~100ms) that are consistent with measured erythrocyte ATP release, we have constructed a dynamic model of this pathway. The model predicts levels of ATP release consistent with measurements obtained over a wide range of hemoglobin O2 saturations (sO2). The model further predicts how insulin, at concentrations found in prediabetes, enhances the activity of PDE3 and reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from erythrocytes. The second model, which couples O2 and ATP transport in capillary networks, shows how intravascular ATP and the resulting conducted vasodilation are affected by local sO2, convection and ATP degradation. This model also predicts network-level effects of decreased ATP release resulting from elevated insulin levels. Taken together, these models lay the groundwork for investigating the systems biology of the regulation of microvascular perfusion distribution by erythrocyte-derived ATP.

26 citations


Journal ArticleDOI
TL;DR: The first study of bAnc1p in the mitochondria on the whole-protein scale using HDX-MS is described and new insights are provided into the conformation of the matrix loops of the bovine carrier in complex with BA in mitochondria.
Abstract: The mitochondrial ADP/ATP carrier catalyzes the transport of ADP and ATP across the mitochondrial inner membrane by switching between two different conformations. They can be blocked by two inhibitors: carboxyatractyloside (CATR) and bongkrekic acid (BA). Our understanding of the ADP/ATP transport process is largely based on analysis of structural differences between the individual inhibited states. The X-ray crystallographic three-dimensional structure of bovine ADP/ATP carrier isoform 1 (bAnc1p) complexed with CATR was determined, but the structure of the BA–carrier complex remains unknown. We recently investigated the conformational dynamics of bAnc1p in detergent solution using hydrogen/deuterium exchange and mass spectrometry (HDX-MS). This study shed light on some features of ADP/ATP translocation, but the mechanism itself and the organization of bAnc1p in the membrane required further investigation. This paper describes the first study of bAnc1p in the mitochondria on the whole-protein scale using ...

24 citations


Journal ArticleDOI
TL;DR: The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model.
Abstract: The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

15 citations