scispace - formally typeset
Search or ask a question

Showing papers on "Mitochondrial DNA replication published in 1988"


Journal ArticleDOI
TL;DR: Analysis of biochemical parameters indicated that the cells grew with mitochondria devoid of a functional respiratory chain, and Morphometric analysis revealed a fourfold increase of the mitochondrial profile area along with a twofold decrease of the numerical mitochondrial profiles.
Abstract: Populations of quail and chicken cells were treated with ethidium bromide, an inhibitor of mitochondrial DNA replication. After long-term exposure to the drug, the cell populations were transferred to ethidium bromide (EtdBr)-free medium, and cloned. Clones HCF7 (quail) and DUS-3 (chicken) were propagated for more than a year, and then characterized. Analysis of total cellular DNA extracted from these cells revealed no characteristic mitochondrial DNA molecule by Southern blot hybridization of HindIII- or AvaI-digested total cellular DNA probed with cloned mitochondrial DNA fragments. Reconstruction experiments, where a small number of parental cells was mixed with HCF7 cells and DUS-3 cells before extraction of total cellular DNA, further strengthen the notion that the drug-treated cells are devoid of mitochondrial DNA molecules. The cell populations were found to proliferate at a moderately reduced growth rate as compared to their respective parents, to be auxotrophic for uridine, and to be stably resistant to the growth inhibitory effect of EtdBr and chloramphenicol. At the ultrastructural level, mitochondria were considerably enlarged and there was a severe reduction in the number of cristae within the organelles and loss of cristae orientation. Morphometric analysis revealed a fourfold increase of the mitochondrial profile area along with a twofold decrease of the numerical mitochondrial profiles. Analysis of biochemical parameters indicated that the cells grew with mitochondria devoid of a functional respiratory chain. The activity of the mitochondrial enzyme dihydroorotate dehydrogenase was decreased by 95% and presumably accounted for uridine auxotrophy.

58 citations


Journal ArticleDOI
TL;DR: A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three to eightfold by cytoplasmic factors from S phase cells was used to examine the temporal specificity of DNA synthesis in vitro.
Abstract: A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.

39 citations


Journal ArticleDOI
TL;DR: It is suggested that mitochondria contain a constant amount of replicative enzyme (DNA polymerase γ) regardless of mitochondrial DNA replication, which differs from the case of nuclear DNA replication.
Abstract: 1. Subcellular localization and changes in the activity of DNA polymerase gamma were examined in sea urchin eggs and embryos. 2. The enzyme was shown to be localized predominantly in mitochondria by differential and isopycnic centrifugation. 3. During embryogenesis, the enzyme activity per embryo remained constant until blastula stage, and thereafter increased. 4. Similarly mitochondrial DNA per embryo increased, indicating that mitochondrial DNA replication starts during embryogenesis. 5. The gamma-activity per mitochondrial DNA remained constant during embryogenesis. 6. These results suggest that mitochondria contain a constant amount of replicative enzyme (DNA polymerase gamma) regardless of mitochondrial DNA replication, which differs from the case of nuclear DNA replication.

2 citations