scispace - formally typeset
Search or ask a question

Showing papers by "Anas Ghadouani published in 2010"


Journal ArticleDOI
TL;DR: In this paper, the authors measured the salinity, total phosphorous (TP), phosphate, total nitrogen (TN), nitrate, chlorophyll-a and relative abundance of the thrombolite microflora in the Yalgorup lakes.
Abstract: The Yalgorup lakes, a groundwater-fed system in south-western Australia recognized as a Ramsar wetland, hold significant scientific and conservation value due to the presence of a unique range of lake systems, resident waterfowl and, on the eastern shore of Lake Clifton, the presence of the only thrombolite reef in the southern hemisphere. Recent concern over changing physico-chemical conditions in the lakes, particularly an increase in salinity, prompted this study: the current status of the inherent thrombolite community is unknown. Salinity, total phosphorous (TP), phosphate, total nitrogen (TN), nitrate, chlorophyll-a and relative abundance of the thrombolite microflora were measured in Lake Clifton to analyse changing conditions in this lake and to determine the effect of these water parameters on the thrombolite community. Comparisons with historical data revealed a significant increase in salinity since 1985 and a possible increase in phosphorus concentrations in the lake in the recent decade, although historical nutrient data are rather sparse. The increased salinity may be due to concentration of lake water through a combination of high evaporation, long-term reduction in rainfall and increased groundwater abstraction. Comparison of the composition of the thrombolite community with historical data indicates a large reduction in relative abundance of Scytonema sp. and other filamentous cyanobacterial species, which are believed to be fundamental for the thrombolite structure. It is concluded the changing physico-chemical environment of the Yalgorup Lakes may have led to the decline in important genera in the thrombolite community; however, the mechanisms underlying this change remain unknown.

18 citations


Journal ArticleDOI
TL;DR: Simple hydrograph analysis of the data has proved unsuccessful at distinguishing the effect of the tree belts on the water table morphology, and the statistical techniques employed in this paper were variation partitioning, principal coordinates of neighbor matrices (PCNM), and canonical redundancy analysis (RDA).
Abstract: Clearing vegetation for traditional agriculture diminishes native habitat and reduces plant transpiration, leading to increased groundwater recharge and onset of dryland salinization due to rising groundwater and mobilization of salt stores in the soil profile. This change in hydrology and salinity can also negatively affect biodiversity in many semiarid regions. Alternating native perennial tree belts with mono-species agriculture within the tree belt alleys is one possible system that can provide recharge control and recover some of the ecosystem services of degraded agricultural landscapes. To assess the effect of this agroforestry technique on groundwater levels, an alley farming trial was established in 1995, incorporating different combinations of belt width, alley width, and revegetation density. Transects of piezometers within each design have been monitored from October 1995 to January 2008. The data set consisted of 70 piezometers monitored on 39 dates. Two trends were observed within the raw data: An increase in water table depth with time and an increase in the range of depths monitored at the site were clearly discernible. However, simple hydrograph analysis of the data has proved unsuccessful at distinguishing the effect of the tree belts on the water table morphology. The statistical techniques employed in this paper to show the effect of the experiment on the water table were variation partitioning, principal coordinates of neighbor matrices (PCNM), and canonical redundancy analysis (RDA). The environmental variables (alley farming design, distance of piezometer from the tree belt, and percentage vegetation cover including edge effect) explained 20-30% of the variation of the transformed and detrended data for the entire site. The spatial PCNM variables explained a further 20-30% of the variation. Partitioning of the site into a northern and southern block increased the proportion of explained variation for the plots in the northern block. The spatial PCNM variables and vegetation cover remained the most significant variables. The PCNM analysis revealed no spatial pattern that could be attributed to the trial. The high proportion of unexplained variation may be due to site variables that have not been considered in this study.

6 citations


Posted ContentDOI
TL;DR: Based on the multi-layer structure of the distributed hydrology-soil-vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow as mentioned in this paper.
Abstract: . Hydrological processes in the karst basin are controlled by the permeable multi-media consisting of soil pores, epikarst fractures and underground conduits. Distributed modeling of hydrological dynamics in such heterogeneously hydrogeological conditions is a challenging task. Based on the multi-layer structure of the distributed hydrology-soil-vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the "cubic law" equation which is associated with fractural width, direction and spacing. A typical karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The basin has detailed meteorological, soil moisture content and underground flow discharges. In addition, in situ measurements of soil properties and hydraulic conductivities were also available. Distribution of epikarst fractures was statistically generated based on fractural features data collected during field investigations. Hydraulic conductivities of epikarst fractures are estimated based on observed flow discharges as initial values. These parameters together with others are further calibrated through marching the observed and simulated soil moisture contents and underground flow discharges from the basin outlet. The results show that the new model was able to capture the sharp increase and decrease of underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features.

4 citations