scispace - formally typeset
Search or ask a question

Showing papers by "Baike Xi published in 2011"


Journal ArticleDOI
TL;DR: In this article, the authors compared the results of the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999-2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets.
Abstract: Atmospheric states from the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) are compared with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999–2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets. Cloud fraction, precipitation, and radiation information are also compared to determine what errors exist within these reanalyses. For the atmospheric state, ARM continuous forcing and the reanalyses have good agreement with the CMBE sounding information, with biases generally within 0.5 K for temperature, 0.5 m s−1 for wind, and 5% for relative humidity. Larger disagreements occur in the upper troposphere (p 800 hPa) for meri...

145 citations


Journal ArticleDOI
TL;DR: Cloud properties were retrieved by applying the Clouds and Earth's Radiant Energy System (CERES) project Edition-2 algorithms to 3.5 years of Tropical Rainfall Measuring Mission Visible and Infrared Scanner data and 5.5 and 8 years of MODerate Resolution Imaging Spectroradiometer (MODIS) data from Aqua and Terra.
Abstract: Cloud properties were retrieved by applying the Clouds and Earth's Radiant Energy System (CERES) project Edition-2 algorithms to 3.5 years of Tropical Rainfall Measuring Mission Visible and Infrared Scanner data and 5.5 and 8 years of MODerate Resolution Imaging Spectroradiometer (MODIS) data from Aqua and Terra, respectively. The cloud products are consistent quantitatively from all three imagers; the greatest discrepancies occur over ice-covered surfaces. The retrieved cloud cover (~59%) is divided equally between liquid and ice clouds. Global mean cloud effective heights, optical depth, effective particle sizes, and water paths are 2.5 km, 9.9, 12.9 μm , and 80 g·m-2, respectively, for liquid clouds and 8.3 km, 12.7, 52.2 μm, and 230 g·m-2 for ice clouds. Cloud droplet effective radius is greater over ocean than land and has a pronounced seasonal cycle over southern oceans. Comparisons with independent measurements from surface sites, the Ice Cloud and Land Elevation Satellite, and the Aqua Advanced Microwave Scanning Radiometer-Earth Observing System are used to evaluate the results. The mean CERES and MODIS Atmosphere Science Team cloud properties have many similarities but exhibit large discrepancies in certain parameters due to differences in the algorithms and the number of unretrieved cloud pixels. Problem areas in the CERES algorithms are identified and discussed.

136 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined hydrological extremes in the central US in consecutive years at the Southern Great Plains (SGP) in recorded history and found that large-scale dynamics play a key role in these extreme events.
Abstract: Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier.

81 citations


Journal ArticleDOI
TL;DR: In this article, a new hybrid classification algorithm to objectively identify deep convective systems (DCSs) in radar and satellite observations has been developed, which can classify the convective cores (CC), stratiform rain (SR) area and nonprecipitating anvil cloud (AC) from the identified DCSs through an integrative analysis of ground-based scanning radar and geostationary satellite data over the Southern Great Plains.
Abstract: [1] A new hybrid classification algorithm to objectively identify Deep Convective Systems (DCSs) in radar and satellite observations has been developed. This algorithm can classify the convective cores (CC), stratiform rain (SR) area and nonprecipitating anvil cloud (AC) from the identified DCSs through an integrative analysis of ground-based scanning radar and geostationary satellite data over the Southern Great Plains. In developing the algorithm, AC is delineated into transitional, thick, and thin components. While there are distinct physical/dynamical differences among these subcategories, their top-of-atmosphere (TOA) radiative fluxes are not significantly different. Therefore, these anvil subcategories are grouped as total anvil, and the radiative impact of each DCS component on the TOA radiation budget is quantitatively estimated. We found that more DCSs occurred during late afternoon, producing peak AC fraction right after sunset. AC covers 3 times the area of SR and almost an order of magnitude larger than CC. The average outgoing longwave (LW) irradiances are almost identical for CC and SR, while slightly higher for AC. Compared to the clear-sky average, the reflected shortwave (SW) fluxes for the three DCS components are greater by a factor of 2–3 and create a strong cooling effect at TOA. The calculated SW and LW cloud radiative forcing (CRF) of AC contribute up to 31% of total NET CRF, while CC and SR contribute only 4 and 11%, respectively. The hybrid classification further lays the groundwork for studying the life cycle of DCS and improvements in geostationary satellite IR-based precipitation retrievals.

59 citations