scispace - formally typeset
Search or ask a question

Showing papers by "Brian M. Wiegmann published in 2018"


Journal ArticleDOI
TL;DR: The analyses suggest that ‘Orthorrhapha’ excluding Eremoneura is not monophyletic; instead, two main lineages of early brachyceran flies are recovered: Homeodactyla and Heterodactsyla.
Abstract: Early diverging brachyceran fly lineages underwent a rapid radiation approximately 180 Ma, coincident in part with the origin of flowering plants. This region of the fly tree includes 25 000 described extant species with diverse ecological roles such as blood‐feeding (haematophagy), parasitoidism, predation, pollination and wood‐feeding (xylophagy). Early diverging brachyceran lineages were once considered a monophyletic group of families called Orthorrhapha, based on the shared character of a longitudinal break in the pupal skin made during the emergence of the adult. Yet other morphological and molecular evidence generally supports a paraphyletic arrangement of ‘Orthorrhapha’, with strong support for one orthorrhaphan lineage – dance flies and relatives – as the closest relative to all higher flies (Cyclorrhapha), together called Eremoneura. In order to establish a comprehensive estimate of the relationships among orthorrhaphan lineages using a thorough sample of publicly available data, we compiled and analysed a dataset including 1217 taxa representing major lineages and 20 molecular markers. Our analyses suggest that ‘Orthorrhapha’ excluding Eremoneura is not monophyletic; instead, we recover two main lineages of early brachyceran flies: Homeodactyla and Heterodactyla. Homeodactyla includes Nemestrinoidea (uniting two parasitic families Acroceridae + Nemestrinidae) as the closest relatives to the large SXT clade, comprising Stratiomyomorpha, Xylophagidae and Tabanomorpha. Heterodactyla includes Bombyliidae with a monophyletic Asiloidea (exclusive of Bombyliidae) as the closest relatives to Eremoneura. Reducing missing data, modifying the distribution of genes across taxa, and, in particular, removing rogue taxa significantly improved tree resolution and statistical support. Although our analyses rely on dense taxonomic sampling and substantial gene coverage, our results pinpoint the limited resolving power of Sanger sequencing‐era molecular phylogenetic datasets with respect to ancient, hyperdiverse radiations.

32 citations


Journal ArticleDOI
TL;DR: This is the first phylogenomic scale study of a dipteran parasitoid family, built upon anchored hybrid enrichment and transcriptomic data of 240 loci of 43 ingroup acrocerid taxa, and results based on nucleotides were both more robust to alterations of the data and different analytical methods and more compatible with the current understanding of acrocersid morphology and patterns of host usage.

30 citations


Journal ArticleDOI
TL;DR: There remain many fly lineages to which new genome sequencing efforts should be directed, most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Abstract: Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.

27 citations