scispace - formally typeset
Search or ask a question
Author

Charles G. Speziale

Bio: Charles G. Speziale is an academic researcher from Boston University. The author has contributed to research in topics: Turbulence & K-epsilon turbulence model. The author has an hindex of 42, co-authored 117 publications receiving 11377 citations. Previous affiliations of Charles G. Speziale include Georgia Institute of Technology & Langley Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-equation model and Reynolds stress transport model are developed for turbulent shear flows and tested for homogeneous shear flow and flow over a backward facing step.
Abstract: Turbulence models are developed by supplementing the renormalization group (RNG) approach of Yakhot and Orszag [J. Sci. Comput. 1, 3 (1986)] with scale expansions for the Reynolds stress and production of dissipation terms. The additional expansion parameter (η≡SK/■) is the ratio of the turbulent to mean strain time scale. While low‐order expansions appear to provide an adequate description for the Reynolds stress, no finite truncation of the expansion for the production of dissipation term in powers of η suffices−terms of all orders must be retained. Based on these ideas, a new two‐equation model and Reynolds stress transport model are developed for turbulent shear flows. The models are tested for homogeneous shear flow and flow over a backward facing step. Comparisons between the model predictions and experimental data are excellent.

2,347 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the modeling of the pressure-strain correlation of turbulent flows from a basic theoretical standpoint with a view toward developing improved second-order closure models and proved that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor.
Abstract: The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

1,556 citations

01 Nov 1992
TL;DR: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models.
Abstract: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

784 citations

Journal ArticleDOI
TL;DR: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models as discussed by the authors.
Abstract: Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

774 citations

Journal ArticleDOI
TL;DR: In this paper, a compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor.
Abstract: New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96 (exp 3) grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence (conducted on a coarse 32(exp 3) grid) is shown to yield results that are in excellent agreement with the fine-grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly.

714 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.
Abstract: Two new two-equation eddy-viscosity turbulence models will be presented. They combine different elements of existing models that are considered superior to their alternatives. The first model, referred to as the baseline (BSL) model, utilizes the original k-ω model of Wilcox in the inner region of the boundary layer and switches to the standard k-e model in the outer region and in free shear flows. It has a performance similar to the Wilcox model, but avoids that model's strong freestream sensitivity

15,459 citations

Journal ArticleDOI
TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Abstract: One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

6,747 citations

Journal ArticleDOI
TL;DR: The implementation of various types of turbulence modeling in a FOAM computational-fluid-dynamics code is discussed, and calculations performed on a standard test case, that of flow around a square prism, are presented.
Abstract: In this article the principles of the field operation and manipulation (FOAM) C++ class library for continuum mechanics are outlined. Our intention is to make it as easy as possible to develop reliable and efficient computational continuum-mechanics codes: this is achieved by making the top-level syntax of the code as close as possible to conventional mathematical notation for tensors and partial differential equations. Object-orientation techniques enable the creation of data types that closely mimic those of continuum mechanics, and the operator overloading possible in C++ allows normal mathematical symbols to be used for the basic operations. As an example, the implementation of various types of turbulence modeling in a FOAM computational-fluid-dynamics code is discussed, and calculations performed on a standard test case, that of flow around a square prism, are presented. To demonstrate the flexibility of the FOAM library, codes for solving structures and magnetohydrodynamics are also presented with appropriate test case results given. © 1998 American Institute of Physics.

3,987 citations

Book
01 Jan 1996
TL;DR: In this article, the authors present a review of rigor properties of low-dimensional models and their applications in the field of fluid mechanics. But they do not consider the effects of random perturbation on models.
Abstract: Preface Part I. Turbulence: 1. Introduction 2. Coherent structures 3. Proper orthogonal decomposition 4. Galerkin projection Part II. Dynamical Systems: 5. Qualitative theory 6. Symmetry 7. One-dimensional 'turbulence' 8. Randomly perturbed systems Part III. 9. Low-dimensional Models: 10. Behaviour of the models Part IV. Other Applications and Related Work: 11. Some other fluid problems 12. Review: prospects for rigor Bibliography.

2,920 citations

Proceedings ArticleDOI
06 Jul 1993
TL;DR: In this article, two versions of the k-w two-equation turbulence model are presented, the baseline model and the Shear-Stress Transport (SSn) model.
Abstract: Two new versions of the k - w two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k - w model of Wilcox. but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner SOC7£; of the boundary-layer but changes gradually to the standard k - f. model (in a k - w fonnulation) towards the boundary-layer edge. The new model is also virtually identical to the k - f. model for free shear layers. The second version of the model is called Shear-Stress Transport (SSn model. It is a variation of the BSL model with the additional ability to account for the transport of the principal turbulent shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear-stress is pro­ portional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different fiowfields. The results of the BSL model are similar to those of the original k - w model, but without the undesirable free stream dependency. The predictions of the SST model are also independent of the freestrearn values but show better agreement with exper­ imental data for adverse pressure gradient boundary-layer flows.

2,470 citations