scispace - formally typeset
Open AccessJournal ArticleDOI

On Explicit Algebraic Stress Models for Complex Turbulent Flows

Thomas B. Gatski, +1 more
- 01 Sep 1993 - 
- Vol. 254, Iss: -1, pp 59-78
Reads0
Chats0
TLDR
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models as discussed by the authors.
Abstract
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

TL;DR: This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data and proposes a novel neural network architecture which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropic tensor.
Journal ArticleDOI

An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows

TL;DR: In this article, an explicit algebraic Reynolds stress turbulence model (EARSM) is presented for both incompressible and compressible three-dimensional wall-bounded turbulent flows, which represents a solution of implicit ARSM equations, where the production to dissipation ratio is obtained as a solution to a nonlinear algebraic relation.
Journal ArticleDOI

The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description

TL;DR: The article gives an overview of the Scale-Adaptive Simulation (SAS) method and the motivation for the formulation of the SAS method is given and a detailed explanation of the underlying ideas is presented.
Journal ArticleDOI

Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction

TL;DR: The Spalart-Allmaras (SA) one-equation turbulence model as mentioned in this paper was developed for aerodynamic flow simulations and was shown to be quite competitive with advanced nonlinear and Reynolds-stress models and to be much more accurate than the original SA model.
Journal ArticleDOI

Turbulence modeling for time-dependent RANS and VLES : a review

TL;DR: In this article, a new approach to time-dependent Reynolds-averaged Navier-Stokes (RANS) computations and very large-eddy simulations (VLES) is presented in which subgrid scale models are proposed that allow a direct numerical simulation (DNS) to go continuously to a RANS computation in the coarse mesh/infinite Reynolds number limit.
References
More filters
Journal ArticleDOI

The numerical computation of turbulent flows

TL;DR: In this paper, the authors present a review of the applicability and applicability of numerical predictions of turbulent flow, and advocate that computational economy, range of applicability, and physical realism are best served by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour.
Journal ArticleDOI

Progress in the development of a Reynolds-stress turbulence closure

TL;DR: In this article, the authors developed a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows.
Journal ArticleDOI

Development of turbulence models for shear flows by a double expansion technique

TL;DR: In this article, a two-equation model and Reynolds stress transport model are developed for turbulent shear flows and tested for homogeneous shear flow and flow over a backward facing step.
Journal ArticleDOI

Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach

TL;DR: In this paper, the authors examined the modeling of the pressure-strain correlation of turbulent flows from a basic theoretical standpoint with a view toward developing improved second-order closure models and proved that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor.
Journal ArticleDOI

Ground effects on pressure fluctuations in the atmospheric boundary layer

TL;DR: In this article, a simple way to model the pressure-containing correlations which appear in the transport equations for Reynolds stress and heat flux was proposed, which accounts for gravitational effects and the modification of the fluctuating pressure field by the presence of a wall.
Related Papers (5)