scispace - formally typeset
Search or ask a question

Showing papers by "Christoph Marquardt published in 2019"


Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of fluctuating channels and its effect on security of continuous-variable quantum key distribution and proposed a novel estimation scheme which is based on the clusterization of the estimated transmittance data.
Abstract: We investigate estimation of fluctuating channels and its effect on security of continuous-variable quantum key distribution. We propose a novel estimation scheme which is based on the clusterization of the estimated transmittance data. We show that uncertainty about whether the transmittance is fixed or not results in a lower key rate. However, if the total number of measurements is large, one can obtain using our method a key rate similar to the non-fluctuating channel even for highly fluctuating channels. We also verify our theoretical assumptions using experimental data from an atmospheric quantum channel. Our method is therefore promising for secure quantum communication over strongly fluctuating turbulent atmospheric channels.

34 citations


Journal ArticleDOI
20 Nov 2019
TL;DR: In this paper, the authors used a crystalline whispering gallery mode resonator made of lithium niobate as a degenerate parametric oscillator to achieve 1.4 dB noise reduction below the shot-noise level.
Abstract: Squeezed vacuum states enable optical measurements below the quantum limit and hence are a valuable resource for applications in quantum metrology and also quantum communication. However, most available sources require high pump powers in the milliwatt range and large setups that hinder real-world applications. Furthermore, degenerate operation of such systems presents a challenge. Here, we use a compact crystalline whispering gallery mode resonator made of lithium niobate as a degenerate parametric oscillator. We demonstrate about 1.4 dB noise reduction below the shot-noise level for only 300 μW of pump power in degenerate single-mode operation. Furthermore, we report a record pump threshold as low as 1.35 μW. Our results show that the whispering gallery-based approach presents a promising platform for a compact and efficient source for nonclassical light.

27 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a compact crystalline whispering gallery mode resonator made of lithium niobate as a degenerate parametric oscillator for nonclassical light.
Abstract: Squeezed vacuum states enable optical measurements below the quantum limit and hence are a valuable resource for applications in quantum metrology and also quantum communication. However, most available sources require high pump powers in the milliwatt range and large setups, which hinders real world applications. Furthermore, degenerate operation of such systems presents a challenge. Here, we use a compact crystalline whispering gallery mode resonator made of lithium niobate as a degenerate parametric oscillator. We demonstrate about 1.4 dB noise reduction below the shot noise level for only 300 $\mu\text{W}$ of pump power in degenerate single mode operation. Furthermore, we report a record pump threshold as low as 1.35 $\mu\text{W}$. Our results show that the whispering gallery based approach presents a promising platform for a compact and efficient source for nonclassical light.

17 citations


Proceedings ArticleDOI
07 Oct 2019
TL;DR: The use case of QKD in a stratospheric environment is described wherein HAPS may serve as relay station of secret keys and encrypted data and a system architecture is presented that comprises the optical aircraft terminal, the optical ground terminal and the most important subsystems that enable implementation of the consideredQKD protocols.
Abstract: Quantum key distribution (QKD) is one of the most mature quantum technologies and can provide quantum-safe security in future communication networks. Since QKD in fiber is limited to a range of few hundred kilometers, one approach to bridge continental scale distances may be the use of high altitude pseudo satellites (HAPS) as mobile trusted nodes in the stratosphere. In parallel, free-space laser communication for high rate data transmission has been a subject of research and development for several decades and its commercialization is progressing rapidly. Important synergies exist between classical free-space communication and QKD systems since the quantum states are often implemented using the same degrees of freedom such as polarization or field amplitude and phase. These synergies can be used to benefit from the progress in classical free-space laser communication in QKD applications. In this paper, the use case of QKD in a stratospheric environment is described wherein HAPS may serve as relay station of secret keys and encrypted data. The mission scenario and HAPS capabilities are analyzed to derive special requirements on the stratospheric laser terminal, the link geometry and the ground segment with respect to a feasibility demonstration. To obtain a flexible and compatible system, discrete variable and continuous variable QKD protocols are considered to be implemented side by side in the HAPS payload. Depending on the system parameters, it can be beneficial to use the one or the other kind of protocol. Thus, a direct comparison of both in one and the same system is of scientific interest. Each of the protocols has particular requirements on coupling efficiency and implementation. Link budget calculations are performed to analyze possible distances, key rates and data transmission rates for the different schemes. In case of the QKD system, the mean coupling efficiency is of main interest, i.e. signal fluctuations arising from atmospheric turbulence must be taken into account in the security proof, but the buffered key generation relaxes real-time requirements. This is different to classical communications, where the corresponding fading loss must be assessed. A system architecture is presented that comprises the optical aircraft terminal, the optical ground terminal and the most important subsystems that enable implementation of the considered QKD protocols. The aircraft terminal is interfaced with the dedicated quantum transmitter module (Alice) and the ground station with the dedicated quantum receiver module (Bob). The optical interfaces are SMF couplings which put high requirements on the receiving optics, in particular the need for wave-front correction with adaptive optics. The findings of the system study are reviewed and necessary next steps pointed out.

6 citations


Journal ArticleDOI
TL;DR: In this article, photon subtraction is used to implement the distillation of pulsed squeezed states originating from a genuinely spatially and temporally single-mode parametric down-conversion source in nonlinear waveguides.
Abstract: Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the properties of the detection schemes often require the use optical filters in order to combine both detection methods in a common experiment. This limits the efficiency and the overall achievable squeezing of the experiment. In our work, we use photon subtraction to implement the distillation of pulsed squeezed states originating from a genuinely spatially and temporally single-mode parametric down-conversion source in non-linear waveguides. Due to the distillation, we witness an improvement of $0.17~\mathrm{dB}$ from an initial squeezing value of $-1.648 \pm 0.002~\mathrm{dB}$, while achieving a purity of $0.58$, and confirm the non-Gaussianity of the distilled state via the higher-order cumulants. With this, we demonstrate the source's suitability for scalable hybrid quantum network applications with pulsed quantum light.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the frequency-resolved intensity noise spectrum of an Yb-doped fiber amplifier down to the fundamental limit of quantum noise was investigated and two seed lasers with different noise characteristics were amplified.
Abstract: We investigate the frequency-resolved intensity noise spectrum of an Yb-doped fiber amplifier down to the fundamental limit of quantum noise. We focus on the kHz and low MHz frequency regime with special interest in the region between 1 and 10 kHz. Intensity noise levels up to >60 dB above the shot noise limit are found, revealing great optimization potential. Additionally, two seed lasers with different noise characteristics were amplified, showing that the seed source has a significant impact and should be considered in the design of high power fiber amplifiers.

3 citations



Posted Content
TL;DR: In this paper, the authors demonstrate homodyne detection of quantum states originating from a spatially and temporally singlemode parametric downconversion source in non-linear waveguides.
Abstract: We demonstrate homodyne detection of quantum states originating from a genuinely spatially and temporally singlemode parametric downconversion source in non-linear waveguides. By using single photon subtraction, we implement the distillation of squeezed states witnessing an improvement of 0.1 dB from an initial squeezing value of 1.62 +/- 0.01 dB, while achieving a purity of 0.58, and confirm the non-Gaussianity of the distilled state via the higher order cumulants. With this we demonstrate the source's suitability for scalable hybrid quantum network applications.

1 citations


Journal ArticleDOI
TL;DR: In this article, the spectral and temporal properties of the photon pairs, as well as their emission rate, may significantly differ from the widely accepted linear model, and the observed phenomena include frequency pulling and broadening in the temporal correlation for the down-converted optical fields.
Abstract: Photon pairs and heralded single photons, obtained from cavity-assisted parametric down-conversion (PDC), play an important role in quantum communications and technology. This motivated a thorough study of the spectral and temporal properties of parametric light, both above the Optical Parametric Oscillator (OPO) threshold, where the semiclassical approach is justified, and deeply below it, where the linear cavity approximation is applicable. The pursuit of a higher two-photon emission rate leads into an interesting intermediate regime where the OPO still operates considerably below the threshold but the nonlinear cavity phenomena cannot be neglected anymore. Here, we investigate this intermediate regime and show that the spectral and temporal properties of the photon pairs, as well as their emission rate, may significantly differ from the widely accepted linear model. The observed phenomena include frequency pulling and broadening in the temporal correlation for the down-converted optical fields. These factors need to be taken into account when devising practical applications of the high-rate cavity-assisted SPDC sources.

1 citations


Proceedings ArticleDOI
23 Jun 2019
TL;DR: In this article, the amount of intensity noise in a fiber-pre-amplifer, which is typically used in kW experiments and relate it to the fundamental shot noise limit (SNL), was investigated.
Abstract: Ytterbium-doped fiber laser amplifiers are known for their high single-pass gain and average powers up to the kilowatt range, while maintaining single-mode output. An upper limitation for the achievable output power is given by transverse mode instabilities (TMI). Due to the interference with higher order modes that create a thermally induced long period grating, chaotic power transfer happens above a certain threshold, which degrades the beam quality. It has been shown that this effect can be influenced by manipulating the grating strength itself. It has also been shown that a certain phase relation of the grating to the guided modes is necessary to efficiently transfer power or hinder the effect by phase disturbance [1]. A natural phase disturbance is given by noise, which is introduced by the pump or seed source in a fiber amplifer. In this contribution, we experimentally investigate the amount of intensity noise in a fiber-pre-amplifer, which is typically used in kW experiments and relate it to the fundamental shot noise limit (SNL). In the experiments, we used a single-frequency external cavity diode laser as a low noise source and amplify it by 30 dB from 10 mW to an output power of 10 W. This is a typical pre-amplifier configuration, before such sources can be amplified to the kW level. The fiber amplifier is a double-clad fiber with a 10/125 μm geometry, pumped by a wavelength stabilized pump diode at 976 nm via a monolithic pump coupler. In order to prevent stimulated Brillouin scattering, the seed laser is phase modulated by a combination of a sinusoid and white noise and thus broadened to 50 GHz linewidth. The noise measurements are done by balanced self-homodyne detection including optimized photodiode readout circuits spanning different frequency ranges. The recorded spectra are given in Fig. 1. The SNL was verified through an attenuation measurement for the subtracted detector signals. Finally, the measured excess noise values are fitted by their corresponding second-order polynomial power dependency and extrapolated to the full power of the amplifier. The seed source, phase modulator and fiber amplifier have been characterized in this setup separately to investigate their contributions. For the fiber amplifier, both co- and counter-pumping configuration, are analysed. Due to detector limitations, all given spectra are measured at an optical power in the mW regime corresponding to approx. 30 dB of attenuation in the amplifiers.

1 citations


Proceedings ArticleDOI
03 Mar 2019
TL;DR: This work shows recent advances in continuous variable QKD and highlights similarities and differences to classical coherent communication.
Abstract: Quantum key distribution (QKD) enables secure cryptography that is safe against future attacks by quantum computers. We show recent advances in continuous variable QKD and highlight similarities and differences to classical coherent communication.