Author
Daksha Yadav
Other affiliations: University of Sassari, Indian Institute of Technology, Jodhpur, Indian Institute of Technology Delhi ...read more
Bio: Daksha Yadav is an academic researcher from West Virginia University. The author has contributed to research in topics: Iris recognition & Facial recognition system. The author has an hindex of 14, co-authored 27 publications receiving 680 citations. Previous affiliations of Daksha Yadav include University of Sassari & Indian Institute of Technology, Jodhpur.
Papers
More filters
TL;DR: This paper presents a novel lens detection algorithm that can be used to reduce the effect of contact lenses and outperforms other lens detection algorithms on the two databases and shows improved iris recognition performance.
Abstract: The presence of a contact lens, particularly a textured cosmetic lens, poses a challenge to iris recognition as it obfuscates the natural iris patterns. The main contribution of this paper is to present an in-depth analysis of the effect of contact lenses on iris recognition. Two databases, namely, the IIIT-D Iris Contact Lens database and the ND-Contact Lens database, are prepared to analyze the variations caused due to contact lenses. We also present a novel lens detection algorithm that can be used to reduce the effect of contact lenses. The proposed approach outperforms other lens detection algorithms on the two databases and shows improved iris recognition performance.
149 citations
01 Jul 2017
TL;DR: A unique multispectral video face database for face presentation attack using latex and paper masks and it is observed that the thermal imaging spectrum is most effective in detecting face presentation attacks.
Abstract: Face recognition systems are susceptible to presentation attacks such as printed photo attacks, replay attacks, and 3D mask attacks. These attacks, primarily studied in visible spectrum, aim to obfuscate or impersonate a person's identity. This paper presents a unique multispectral video face database for face presentation attack using latex and paper masks. The proposed Multispectral Latex Mask based Video Face Presentation Attack (MLFP) database contains 1350 videos in visible, near infrared, and thermal spectrums. Since the database consists of videos of subjects without any mask as well as wearing ten different masks, the effect of identity concealment is analyzed in each spectrum using face recognition algorithms. We also present the performance of existing presentation attack detection algorithms on the proposed MLFP database. It is observed that the thermal imaging spectrum is most effective in detecting face presentation attacks.
104 citations
04 Jun 2013
TL;DR: An in-depth analysis of the effect of contact lens on iris recognition performance is presented and the results computed using VeriEye suggest that color cosmetic lens significantly increases the false rejection at a fixed false acceptance rate.
Abstract: Over the years, iris recognition has gained importance in the biometrics applications and is being used in several large scale nationwide projects. Though iris patterns are unique, they may be affected by external factors such as illumination, camera-eye angle, and sensor interoperability. The presence of contact lens, particularly color cosmetic lens, may also pose a challenge to iris biometrics as it obfuscates the iris patterns and changes the inter and intra-class distributions. This paper presents an in-depth analysis of the effect of contact lens on iris recognition performance. We also present the IIIT-D Contact Lens Iris database with over 6500 images pertaining to 101 subjects. For each subject, images are captured without lens, transparent (prescription) lens, and color cosmetic lens (textured) using two different iris sensors. The results computed using VeriEye suggest that color cosmetic lens significantly increases the false rejection at a fixed false acceptance rate. Also, the experiments on four existing lens detection algorithms suggest that incorporating lens detection helps in maintaining the iris recognition performance. However further research is required to build sophisticated lens detection algorithm that can improve iris recognition.
96 citations
TL;DR: Results of the third LivDet-Iris 2017 show that even with advances, printed iris attacks as well as patterned contacts lenses are still difficult for software-based systems to detect.
Abstract: Presentation attacks such as using a contact lens with a printed pattern or printouts of an iris can be utilized to bypass a biometric security system The first international iris liveness competition was launched in 2013 in order to assess the performance of presentation attack detection (PAD) algorithms, with a second competition in 2015 This paper presents results of the third competition, LivDet-Iris 2017 Three software-based approaches to Presentation Attack Detection were submitted Four datasets of live and spoof images were tested with an additional cross-sensor test New datasets and novel situations of data have resulted in this competition being of a higher difficulty than previous competitions Anonymous received the best results with a rate of rejected live samples of 336% and rate of accepted spoof samples of 1471% The results show that even with advances, printed iris attacks as well as patterned contacts lenses are still difficult for software-based systems to detect Printed iris images were easier to be differentiated from live images in comparison to patterned contact lenses as was also seen in previous competitions
92 citations
01 Sep 2016
TL;DR: A novel structural and textural feature based iris spoofing detection framework (DESIST) is proposed which combines multi-order dense Zernike moments and Local Binary Pattern with Variance for representing textural changes in a spoofed iris image.
Abstract: Human iris is considered a reliable and accurate modality for biometric recognition due to its unique texture information. However, similar to other biometric modalities, iris recognition systems are also vulnerable to presentation attacks (commonly called spoofing) that attempt to conceal or impersonate identity. Examples of typical iris spoofing attacks are printed iris images, textured contact lenses, and synthetic creation of iris images. It is critical to note that majority of the algorithms proposed in the literature are trained to handle a specific type of spoofing attack. These algorithms usually perform very well on that particular attack. However, in real-world applications, an attacker may perform different spoofing attacks. In such a case, the problem becomes more challenging due to inherent variations in different attacks. In this paper, we focus on a medley of iris spoofing attacks and present a unified framework for detecting such attacks. We propose a novel structural and textural feature based iris spoofing detection framework (DESIST). Multi-order dense Zernike moments are calculated across the iris image which encode variations in structure of the iris image. Local Binary Pattern with Variance (LBPV) is utilized for representing textural changes in a spoofed iris image. The highest classification accuracy of 82.20% is observed by the proposed framework for detecting normal and spoofed iris images on a combined iris spoofing database.
77 citations
Cited by
More filters
TL;DR: The laws of categorical and comparative judgements of signal detection have been studied in the literature as mentioned in this paper for signal detection with equal variance with equal Variances, i.e., Gaussian Distributions of Signal and Noise with Unequal Variants.
Abstract: Contents: Foreword. Preface. What Are Statistical Decisions? Non-Parametric Measures of Sensitivity. Gaussian Distributions of Signal and Noise With Equal Variances. Gaussian Distributions of Signal and Noise With Unequal Variances. Conducting a Rating Scale Experiment. Choice Theory Approximations to Signal Detection Theory. Threshold Theory. The Laws of Categorical and Comparative Judgement. Appendices: Answers to Problems. Logarithms. Integration of the Expression for the Logistic Curve. Computer Programmes for Signal Detection Analysis. Tables.
798 citations
719 citations
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
Abstract: Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition (FR) since 2014, launched by the breakthroughs of DeepFace and DeepID. Since then, deep learning technique, characterized by the hierarchical architecture to stitch together pixels into invariant face representation, has dramatically improved the state-of-the-art performance and fostered successful real-world applications. In this survey, we provide a comprehensive review of the recent developments on deep FR, covering broad topics on algorithm designs, databases, protocols, and application scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: “one-to-many augmentation” and “many-to-one normalization”. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industrial scenes. Finally, the technical challenges and several promising directions are highlighted.
353 citations
TL;DR: This work assumes a very limited knowledge about biometric spoofing at the sensor to derive outstanding spoofing detection systems for iris, face, and fingerprint modalities based on two deep learning approaches based on convolutional networks.
Abstract: Biometrics systems have significantly improved person identification and authentication, playing an important role in personal, national, and global security. However, these systems might be deceived (or spoofed) and, despite the recent advances in spoofing detection, current solutions often rely on domain knowledge, specific biometric reading systems, and attack types. We assume a very limited knowledge about biometric spoofing at the sensor to derive outstanding spoofing detection systems for iris, face, and fingerprint modalities based on two deep learning approaches. The first approach consists of learning suitable convolutional network architectures for each domain, whereas the second approach focuses on learning the weights of the network via back propagation. We consider nine biometric spoofing benchmarks—each one containing real and fake samples of a given biometric modality and attack type—and learn deep representations for each benchmark by combining and contrasting the two learning approaches. This strategy not only provides better comprehension of how these approaches interplay, but also creates systems that exceed the best known results in eight out of the nine benchmarks. The results strongly indicate that spoofing detection systems based on convolutional networks can be robust to attacks already known and possibly adapted, with little effort, to image-based attacks that are yet to come.
353 citations
TL;DR: In this paper, the authors proposed two deep learning approaches for spoofing detection of iris, face, and fingerprint modalities based on a very limited knowledge about biometric spoofing at the sensor.
Abstract: Biometrics systems have significantly improved person identification and authentication, playing an important role in personal, national, and global security. However, these systems might be deceived (or "spoofed") and, despite the recent advances in spoofing detection, current solutions often rely on domain knowledge, specific biometric reading systems, and attack types. We assume a very limited knowledge about biometric spoofing at the sensor to derive outstanding spoofing detection systems for iris, face, and fingerprint modalities based on two deep learning approaches. The first approach consists of learning suitable convolutional network architectures for each domain, while the second approach focuses on learning the weights of the network via back-propagation. We consider nine biometric spoofing benchmarks --- each one containing real and fake samples of a given biometric modality and attack type --- and learn deep representations for each benchmark by combining and contrasting the two learning approaches. This strategy not only provides better comprehension of how these approaches interplay, but also creates systems that exceed the best known results in eight out of the nine benchmarks. The results strongly indicate that spoofing detection systems based on convolutional networks can be robust to attacks already known and possibly adapted, with little effort, to image-based attacks that are yet to come.
325 citations