scispace - formally typeset
Search or ask a question

Showing papers by "Daryoosh Vashaee published in 2022"


Journal ArticleDOI
TL;DR: ElATools as mentioned in this paper is a tool for analysis of the second-order elastic stiffness tensor of two-dimensional and three-dimensional (3D) crystal systems using Fortran 90.

17 citations



Journal ArticleDOI
18 Mar 2022
TL;DR: In this article , the effect of metamagnetic shape memory alloys (MetaMSMAs) doping with Cd was investigated, both experimentally and theoretically, as a function of the doping.
Abstract: Martensitic transformation (MT), magnetic properties, and magnetocaloric effect (MCE) in Heusler-type Ni47Mn40Sn13−x Cd x (x= 0, 0.75, 1, 1.25 at. %) metamagnetic shape memory alloys (MetaMSMAs) are investigated, both experimentally and theoretically, as a function of doping with Cd. Ab-initio computations reveal that the ferromagnetic (FM) configuration is energetically more favorable in the cubic phase than the antiferromagnetic (AFM) state in undoped and doped alloys as well. Moreover, it is revealed that the alloys in the ground state exhibit a tetragonal structure confirming the existence of MT, in agreement with the experiments. It was indicated, both in theory and practice, that a reduction of the unit cell volume and an increase of the MT temperature as a function of the Cd doping. Indirect estimations of MCE in the vicinity of MT were carried out by using thermomagnetization curves measured under different magnetic fields up to 5 T. The results demonstrated that the doped alloys exhibit enhanced values of the inverse MCE comparable with those of Ni-Mn-based MetaMSMAs. Maximum magnetic entropy change in a field change of 2 T increases from 3.0 J.kg−1K−1 for the undoped alloy to 3.4 and 5.0 J.kg−1K−1 for the alloys doped with 0.75 and 1 at.% of Cd, respectively. The inverse and conventional MCE were explored by direct measurements of the adiabatic temperature change under the magnetic field change of 1.96 T. The Cd doping increased the maximum of inverse MCE by nearly 78% from 0.9 K to 1.6 K for the undoped and doped alloys, respectively. The results depicted that Cd doping can effectively tailor the structural, magnetic, and MCE properties of the Ni–Mn–Sn MetaMSMAs.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the thermoelectric properties of (Bi,Sb)2(Se,Te)3 thin films deposited via thermal evaporation of ternary compound pellets on four-inch SiO2 substrates at room temperature were investigated.
Abstract: Bismuth telluride-based thin films have been investigated as the active material in flexible and micro thermoelectric generators (TEGs) for near room-temperature energy harvesting applications. The latter is a class of compact printed circuit board compatible devices conceptualized for operation at low-temperature gradients to generate power for wireless sensor nodes (WSNs), the fundamental units of the Internet-of-Things (IoT). CMOS and MEMS compatible micro-TEGs require thin films that can be integrated into the fabrication flow without compromising their thermoelectric properties. We present results on the thermoelectric properties of (Bi,Sb)2(Se,Te)3 thin films deposited via thermal evaporation of ternary compound pellets on four-inch SiO2 substrates at room temperature. Thin-film compositions and post-deposition annealing parameters are optimized to achieve power factors of 2.75 mW m−1 K−2 and 0.59 mW m−1 K−2 for p-type and n-type thin films. The measurement setup is optimized to characterize the thin-film properties accurately. Thin-film adhesion is further tested and optimized on several substrates. Successful lift-off of p-type and n-type thin films is completed on the same wafer to create thermocouple patterns as per the target device design proving compatibility with the standard MEMS fabrication process.

Journal ArticleDOI
TL;DR: In this paper , the authors developed a formalism and a computer program to evaluate and quantify the EMF effects in chemical reactions and found that EMF absorption is closely related to the collisional redistribution of energy in molecules.
Abstract: The effects of electromagnetic fields (EMF) have been widely debated concerning their role in chemical reactions. Reactions, usually took hours or days to complete, have been shown to happen a thousand times faster using EMF radiations. This work develops a formalism and a computer program to evaluate and quantify the EMF effects in chemical reactions. The master equation employed in this program solves the internal energy of the reaction under EMFs while including collisional effects. Multiphoton absorption and emission are made possible with the transitioning energy close to the EMF and are influenced by the dielectric properties of the system. Dimethyl Sulfoxide and Benzyl Chloride are simulated under different EMF intensities. The results show that EMF absorption is closely related to the collisional redistribution of energy in molecules. The EMF effect can be interpreted as a shift of the thermodynamic equilibrium. Under such nonequilibrium energy distribution, the ‘temperature’ is not a reliable quantity for defining the state of the system. GRAPHICAL ABSTRACT



Journal ArticleDOI
TL;DR: In this article , the pros and cons of different approaches to dopant diffusion, residue removal, and diffusion mask selection when working with spin-on dopants were evaluated and compared.