scispace - formally typeset
Search or ask a question

Showing papers in "Micromachines in 2022"


Journal ArticleDOI
TL;DR: In this article , the behavior of the human cardiovascular system is characterized by the Casson fluid model while the physical properties of iron (Fe3O4) and copper (Cu) are used in the analysis.
Abstract: Curved veins and arteries make up the human cardiovascular system, and the peristalsis process underlies the blood flowing in these ducts. The blood flow in the presence of hybrid nanoparticles through a tapered complex wavy curved channel is numerically investigated. The behavior of the blood is characterized by the Casson fluid model while the physical properties of iron (Fe3O4) and copper (Cu) are used in the analysis. The fundamental laws of mass, momentum and energy give rise the system of nonlinear coupled partial differential equations which are normalized using the variables, and the resulting set of governing relations are simplified in view of a smaller Reynolds model approach. The numerical simulations are performed using the computational software Mathematica’s built-in ND scheme. It is noted that the velocity of the blood is abated by the nanoparticles’ concentration and assisted in the non-uniform channel core. Furthermore, the nanoparticles’ volume fraction and the dimensionless curvature of the channel reduce the temperature profile.

89 citations


Journal ArticleDOI
TL;DR: In this article , the authors used the multi-physics COMSOL software and the Darcy-Brinkman-Forchheimer model with a porosity of 0.4 to conduct a numerical study on heat transfer by Cu-TiO2/EG hybrid nano-fluid inside a porous annulus between a zigzagged triangle and different cylinders and under the influence of an inclined magnetic field.
Abstract: The current study uses the multi-physics COMSOL software and the Darcy–Brinkman–Forchheimer model with a porosity of ε = 0.4 to conduct a numerical study on heat transfer by Cu-TiO2/EG hybrid nano-fluid inside a porous annulus between a zigzagged triangle and different cylinders and under the influence of an inclined magnetic field. The effect of numerous factors is detailed, including Rayleigh number (103 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 100), volume percent of the nano-fluid (0.02 ≤ ϕ ≤ 0.08), and the rotating speed of the cylinder (−4000 ≤ w ≤ 4000). Except for the Hartmann number, which decelerates the flow rate, each of these parameters has a positive impact on the thermal transmission rate.

75 citations


Journal ArticleDOI
TL;DR: In this paper , the authors carried out a numerical investigation of time-dependent magneto-hydro-dynamics (MHD) Eyring-Powell liquid by taking a moving/static wedge with Darcy-Forchheimer relation.
Abstract: The intention of this study is to carry out a numerical investigation of time-dependent magneto-hydro-dynamics (MHD) Eyring-Powell liquid by taking a moving/static wedge with Darcy-Forchheimer relation. Thermal radiation was taken into account for upcoming solar radiation, and the idea of bioconvection is also considered for regulating the unsystematic exertion of floating nanoparticles. The novel idea of this work was to stabilized nanoparticles through the bioconvection phenomena. Brownian motion and thermophoresis effects are combined in the most current revision of the nanofluid model. Fluid viscosity and thermal conductivity that depend on temperature are predominant. The extremely nonlinear system of equations comprising partial differential equations (PDEs) with the boundary conditions are converted into ordinary differential equations (ODEs) through an appropriate suitable approach. The reformed equations are then operated numerically with the use of the well-known Lobatto IIIa formula. The variations of different variables on velocity, concentration, temperature and motile microorganism graphs are discussed as well as force friction, the Nusselt, Sherwood, and the motile density organism numbers. It is observed that Forchheimer number Fr decline the velocity field in the case of static and moving wedge. Furthermore, the motile density profiles are deprecated by higher values of the bio convective Lewis number and Peclet number. Current results have been related to the literature indicated aforementioned and are found to be great achievement.

60 citations


Journal ArticleDOI
TL;DR: In this article , the authors proposed a novel approach to improve the performance of the centrifugal pump with regard to the pump head, the pump efficiency, and the power of the pump.
Abstract: In this study, we proposed a novel approach to improve centrifugal pump performance with regard to the pump head, pump efficiency, and power. Firstly, to establish constraints, an optimal numerical model that accounted for factors such as pump efficiency and the head was considered. The pump was designed, and an artificial intelligence algorithmic approach was applied to the pump before performing experiments. We considered a set of models by selecting the parameters of the centrifugal pump casing section area, the interference of the impeller, the volute tongue length, and the volute tongue angle. The weights of the factors of safety and displacement on the optimization indices were estimated. The matrix of the weights for the optimal process was less than 38% or greater than 62%. This approach guarantees a complicated multi-objective optimization problem. The results show that the centrifugal pump performances were improved.

55 citations


Journal ArticleDOI
TL;DR: In this paper , an electroconductive incompressible ternary hybrid nanofluid with heat conduction in a boundary layer including metallic nanoparticles (NPs) over an extended cylindrical with magnetic induction effects is reported.
Abstract: The flow of an electroconductive incompressible ternary hybrid nanofluid with heat conduction in a boundary layer including metallic nanoparticles (NPs) over an extended cylindrical with magnetic induction effects is reported in this research. The ternary hybrid nanofluid has been synthesized with the dispersion of titanium dioxide, cobalt ferrite, and magnesium oxide NPs in the base fluid water. For a range of economical and biological applications, a computational model is designed to augment the mass and energy conveyance rate and promote the performance and efficiency of thermal energy propagation. The model has been written as a system of partial differential equations. Which are simplified to the system of ordinary differential equations through similarity replacements. The computing approach parametric continuation method is used to further process the resultant first order differential equations. The results are validated with the bvp4c package for accuracy and validity. The outcomes are displayed and analyzed through Figures and Tables. It has been observed that the inverse Prandtl magnetic number and a larger magnetic constant reduce the fluid flow and elevate the energy profile. The variation of ternary hybrid NPs significantly boosts the thermophysical features of the base fluid.

51 citations


Journal ArticleDOI
TL;DR: In this article , the consequences of the Darcy-Forchheimer medium and thermal radiation in the magnetohydrodynamic (MHD) Maxwell nanofluid flow subject to a stretching surface were investigated.
Abstract: This study aimed to investigate the consequences of the Darcy–Forchheimer medium and thermal radiation in the magnetohydrodynamic (MHD) Maxwell nanofluid flow subject to a stretching surface. The involvement of the Maxwell model provided more relaxation time to the momentum boundary layer formulation. The thermal radiation appearing from the famous Rosseland approximation was involved in the energy equation. The significant features arising from Buongiorno’s model, i.e., thermophoresis and Brownian diffusion, were retained. Governing equations, the two-dimensional partial differential equations based on symmetric components of non-Newtonian fluids in the Navier–Stokes model, were converted into one-dimensional ordinary differential equations using transformations. For fixed values of physical parameters, the solutions of the governing ODEs were obtained using the homotopy analysis method. The appearance of non-dimensional coefficients in velocity, temperature, and concentration were physical parameters. The critical parameters included thermal radiation, chemical reaction, the porosity factor, the Forchheimer number, the Deborah number, the Prandtl number, thermophoresis, and Brownian diffusion. Results were plotted in graphical form. The variation in boundary layers and corresponding profiles was discussed, followed by the concluding remarks. A comparison of the Nusselt number (heat flux rate) was also framed in graphical form for convective and non-convective/simple boundary conditions at the surface. The outcomes indicated that the thermal radiation increased the temperature profile, whereas the chemical reaction showed a reduction in the concentration profile. The drag force (skin friction) showed sufficient enhancement for the augmented values of the porosity factor. The rates of heat and mass flux also fluctuated for various values of the physical parameters. The results can help model oil reservoirs, geothermal engineering, groundwater management systems, and many others.

42 citations


Journal ArticleDOI
TL;DR: The classification and types of UAVs, as well as various battery charging methods, are discussed in this paper, and a number of difficulties and solutions for safe operation are addressed.
Abstract: The groundbreaking Unmanned Aerial Vehicles (UAVs) technology has gained significant attention from both academia and industrial experts due to several applications, such as military missions, power lines inspection, precision agriculture, remote sensing, delivery services, traffic monitoring and many more. UAVs are expected to become a mainstream delivery element by 2040 to address the ever-increasing demand for delivery services. Similarly, UAV-assisted monitoring approaches will automate the inspection process, lowering mission costs, increasing access to remote locations and saving time and energy. Despite the fact that unmanned aerial vehicles (UAVs) are gaining popularity in both military and civilian applications, they have a number of limitations and critical problems that must be addressed in order for missions to be effective. One of the most difficult and time-consuming tasks is charging UAVs. UAVs’ mission length and travel distance are constrained by their low battery endurance. There is a need to study multi-UAV charging systems to overcome battery capacity limitations, allowing UAVs to be used for a variety of services while saving time and human resources. Wired and Wireless Power Transfer (WPT) systems have emerged as viable options to successfully solve this difficulty. In the past, several research surveys have focused on crucial aspects of wireless UAV charging. In this review, we have also examined the most emerging charging techniques for UAVs such as laser power transfer (LPT), distributed laser charging (DLC), simultaneous wireless information and power transfer (SWIPT) and simultaneous light wave information and power transfer (SLIPT). The classification and types of UAVs, as well as various battery charging methods, are all discussed in this paper. We’ve also addressed a number of difficulties and solutions for safe operation. In the final section, we have briefly discussed future research directions.

38 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated heat and mass transport in a pseudo-plastic model past over a stretched porous surface in the presence of the Soret and Dufour effects.
Abstract: The rheology of different materials at the micro and macro levels is an area of great interest to many researchers, due to its important physical significance. Past experimental studies have proved the efficiency of the utilization of nanoparticles in different mechanisms for the purpose of boosting the heat transportation rate. The purpose of this study is to investigate heat and mass transport in a pseudo-plastic model past over a stretched porous surface in the presence of the Soret and Dufour effects. The involvement of tri-hybrid nanoparticles was incorporated into the pseudo-plastic model to enhance the heat transfer rate, and the transport problem of thermal energy and solute mechanisms was modelled considering the heat generation/absorption and the chemical reaction. Furthermore, traditional Fourier and Fick’s laws were engaged in the thermal and solute transportation. The physical model was developed upon Cartesian coordinates, and boundary layer theory was utilized in the simplification of the modelled problem, which appears in the form of coupled partial differential equations systems (PDEs). The modelled PDEs were transformed into corresponding ordinary differential equations systems (ODEs) by engaging the appropriate similarity transformation, and the converted ODEs were solved numerically via a Finite Element Procedure (FEP). The obtained solution was plotted against numerous emerging parameters. In addition, a grid independent survey is presented. We recorded that the temperature of the tri-hybrid nanoparticles was significantly higher than the fluid temperature. Augmenting the values of the Dufour number had a similar comportment on the fluid temperature and concentration. The fluid temperature increased against a higher estimation of the heat generation parameter and the Eckert numbers. The impacts of the buoyancy force parameter and the porosity parameter were quite opposite on the fluid velocity.

35 citations


Journal ArticleDOI
TL;DR: In this article , the effect of a heat source/sink on nanofluid flow through a cone, wedge, and plate when using a suspension of aluminium alloys (AA7072 and AA7075) as nanoparticles in base fluid water was investigated.
Abstract: The present research investigates the effect of a heat source/sink on nanofluid flow through a cone, wedge, and plate when using a suspension of aluminium alloys (AA7072 and AA7075) as nanoparticles in base fluid water. The activation energy and porous material are also considered in the modelling. Using similarity transformations, the modelling equations were converted into an ordinary differential equation (ODEs) system. The Runge Kutta Fehlberg 45 fourth fifth-order (RKF 45) technique and shooting approach were used to numerically solve these equations. The influence of essential aspects on flow fields, heat, and mass transfer rates was studied and addressed using graphical representations. The outcome reveals that the case of fluid flow past a plate shows improved heat transfer for augmented heat source/sink parameter values than the cases for fluid flow past a cone and wedge does. Furthermore, we observed the least heat transfer for the case of fluid flow past the cone. The mass transfer for the case of fluid flow past the cone increased more slowly for growing activation energy parameter values than in the other cases. Moreover, we observed higher mass transfer rates for the case of fluid flow past the plate. The augmented values of the heat source/sink parameter decayed the heat transfer rate in all three flow cases.

34 citations


Journal ArticleDOI
TL;DR: In this article , the authors considered the dynamics of water conveying multi-walled carbon nanoparticles (MWCNT) through a vertical Cleveland Z-staggered cavity where entropy generation plays a significant role.
Abstract: To date, when considering the dynamics of water conveying multi-walled carbon nanoparticles (MWCNT) through a vertical Cleveland Z-staggered cavity where entropy generation plays a significant role, nothing is known about the increasing Reynold number, Hartmann number, and Darcy number when constant conduction occurs at both sides, but at different temperatures. The system-governing equations were solved using suitable models and the Galerkin Finite Element Method (GFEM). Based on the outcome of the simulation, it is worth noting that increasing the Reynold number causes the inertial force to be enhanced. The velocity of incompressible Darcy-Forchheimer flow at the middle vertical Cleveland Z-staggered cavity declines with a higher Reynold number. Enhancement in the Hartman number causes the velocity at the center of the vertical Cleveland Z-staggered cavity to be reduced due to the associated Lorentz force, which is absent when Ha = 0 and highly significant when Ha = 30. As the Reynold number grows, the Bejan number declines at various levels of the Hartmann number, but increases at multiple levels of the Darcy number.

33 citations


Journal ArticleDOI
TL;DR: In this paper , the authors used MoS2 nanosheets for surface modification of screen-printed electrode (MoS2NSs-SPE) aimed at detecting isoniazid (INZ) in the presence of acetaminophen (AC).
Abstract: We used MoS2 nanosheets (MoS2 NSs) for surface modification of screen-printed electrode (MoS2NSs-SPE) aimed at detecting isoniazid (INZ) in the presence of acetaminophen (AC). According to analysis, an impressive catalytic performance was found for INZ and AC electro-oxidation, resulting in an appreciable peak resolution (~320 mV) for both analytes. Chronoamperometry, differential pulse voltammetry (DPV), linear sweep voltammogram (LSV), and cyclic voltammetry (CV) were employed to characterize the electrochemical behaviors of the modified electrode for the INZ detection. Under the optimal circumstances, there was a linear relationship between the peak current of oxidation and the various levels of INZ (0.035–390.0 µM), with a narrow limit of detection (10.0 nM). The applicability of the as-developed sensor was confirmed by determining the INZ and AC in tablets and urine specimens, with acceptable recoveries.

Journal ArticleDOI
TL;DR: In this article , a machine learning framework is proposed to quantitatively analyze the correlated relationship between the process parameters and deposition shape, thus providing an optimal process parameter selection to control the final deposition geometry.
Abstract: Wire arc additive manufacturing (WAAM) is capable of rapidly depositing metal materials thus facilitating the fabrication of large-shape metal components. However, due to the multi-process-variability in the WAAM process, the deposited shape (bead width, height, depth of penetration) is difficult to predict and control within the desired level. Ultimately, the overall build will not achieve a near-net shape and will further hinder the part from performing its functionality without post-processing. Previous research primarily utilizes data analytical models (e.g., regression model, artificial neural network (ANN)) to forwardly predict the deposition width and height variation based on single or cross-linked process variables. However, these methods cannot effectively determine the optimal printable zone based on the desired deposition shape due to the inability to inversely deduce from these data analytical models. Additionally, the process variables are intercorrelated, and the bead width, height, and depth of penetration are highly codependent. Therefore, existing analysis cannot grant a reliable prediction model that allows the deposition (bead width, height, and penetration height) to remain within the desired level. This paper presents a novel machine learning framework for quantitatively analyzing the correlated relationship between the process parameters and deposition shape, thus providing an optimal process parameter selection to control the final deposition geometry. The proposed machine learning framework can systematically and quantitatively predict the deposition shape rather than just qualitatively as with other existing machine learning methods. The prediction model can also present the complex process-quality relations, and the determination of the deposition quality can guide the WAAM to be more prognostic and reliable. The correctness and effectiveness of the proposed quantitative process-quality analysis will be validated through experiments.

Journal ArticleDOI
TL;DR: In this article , the authors proposed an air-coupled ultrasonic transducer with a matching system, which includes the matching layers and bonding layers attached to the piezoelectric composite.
Abstract: The tremendous acoustic impedance difference between the piezoelectric composite and air prevents the ultrasonic transition, resulting in low amplitude for the received signal for the composite defect detection using an air-coupled transducer. The matching system, which includes the matching layers and bonding layers attached to the piezoelectric composite, can reduce the acoustic impedance difference and benefit the acoustic transition. In this paper, the fabrication method and modeling for the matching layers are proposed to optimize the transducer performance. The effects of bonding layer material on the transducer performance are also discussed. Experiments were conducted for modeling validation. The proposed model can predict the matching layer acoustic properties with an error of less than 11%. The bonding layer using the same material as the first matching layer can help to increase the sensitivity by about 33% compared to the traditional epoxy bonding. The optimized air-coupled ultrasonic transducer, based on the results of this study, has a 1283 mV amplitude in the air, which is 56% higher than commercially available transducers, and can identify the defects in two typical non-metallic composite materials easily.

Journal ArticleDOI
TL;DR: In this paper , a surface plasmon resonance (SPR) sensor based on a D-shaped germanium-doped photonic crystal fiber (PCF) is proposed.
Abstract: In this work, a surface plasmon resonance (SPR) sensor based on a D-shaped germanium-doped photonic crystal fiber (PCF) is proposed. The finite element method (FEM) is introduced to analyze the structure parameters, such as germanium-doped concentration, lattice pitch, and air hole size. In addition, the coupling properties and birefringence properties of PCF are also studied. The computer simulation results indicate that two different surface plasmon polariton (SPP) coupling modes are produced on the polished surface, covered with metal film, when the analyte refractive index (RI) is 1.34. Then, with the increase of the RI, the incompleteness of one of the coupling modes will be transformed into the complete coupling. The effect of germanium concentration on the birefringence is also analyzed. It has an optimal wavelength sensitivity of 5600 nm/RIU when the RI is 1.37. This sensor exhibits a maximum birefringence of 1.06 × 10−2 and a resolution of 1.78 × 10−5 RIU with high linearity.

Journal ArticleDOI
TL;DR: The potential use of FTIR to distinguish between healthy and pathological samples is presented, with examples of early cancer detection, human immunodeficiency virus (HIV) detection, and routine blood analysis, among others.
Abstract: Since microorganisms are evolving rapidly, there is a growing need for a new, fast, and precise technique to analyse blood samples and distinguish healthy from pathological samples. Fourier Transform Infrared (FTIR) spectroscopy can provide information related to the biochemical composition and how it changes when a pathological state arises. FTIR spectroscopy has undergone rapid development over the last decades with a promise of easier, faster, and more impartial diagnoses within the biomedical field. However, thus far only a limited number of studies have addressed the use of FTIR spectroscopy in this field. This paper describes the main concepts related to FTIR and presents the latest research focusing on FTIR spectroscopy technology and its integration in lab-on-a-chip devices and their applications in the biological field. This review presents the potential use of FTIR to distinguish between healthy and pathological samples, with examples of early cancer detection, human immunodeficiency virus (HIV) detection, and routine blood analysis, among others. Finally, the study also reflects on the features of FTIR technology that can be applied in a lab-on-a-chip format and further developed for small healthcare devices that can be used for point-of-care monitoring purposes. To the best of the authors’ knowledge, no other published study has reviewed these topics. Therefore, this analysis and its results will fill this research gap.

Journal ArticleDOI
TL;DR: A review of the recent developments in the soft robotics field, with a focus on the underwater application frontier, can be found in this paper , where the authors provide an overview of soft robotics applications.
Abstract: Nature and biological creatures are some of the main sources of inspiration for humans. Engineers have aspired to emulate these natural systems. As rigid systems become increasingly limited in their capabilities to perform complex tasks and adapt to their environment like living creatures, the need for soft systems has become more prominent due to the similar complex, compliant, and flexible characteristics they share with intelligent natural systems. This review provides an overview of the recent developments in the soft robotics field, with a focus on the underwater application frontier.

Journal ArticleDOI
TL;DR: In this article , the authors introduce the important role and specific examples of sensors based on graphene and its base materials in biomedicine, photoelectrochemistry, flexible pressure, and other fields, and it puts forward the difficulties encountered in the application of graphene materials in sensors.
Abstract: With the research and the development of graphene-based materials, new sensors based on graphene compound materials are of great significance to scientific research and the consumer market. However, in the past ten years, due to the requirements of sensor accuracy, reliability, and durability, the development of new graphene sensors still faces many challenges in the future. Due to the special structure of graphene, the obtained characteristics can meet the requirements of high-performance sensors. Therefore, graphene materials have been applied in many innovative sensor materials in recent years. This paper introduces the important role and specific examples of sensors based on graphene and its base materials in biomedicine, photoelectrochemistry, flexible pressure, and other fields in recent years, and it puts forward the difficulties encountered in the application of graphene materials in sensors. Finally, the development direction of graphene sensors has been prospected. For the past two years of the COVID-19 epidemic, the detection of the virus sensor has been investigated. These new graphene sensors can complete signal detection based on accuracy and reliability, which provides a reference for researchers to select and manufacture sensor materials.

Journal ArticleDOI
TL;DR: It is found that the velocity and temperature profile increases with the increasing values of the viscoelastic parameter and solid volume fraction; additionally, efficiency is increased for higher values of thermal radiation.
Abstract: In the present paper, an MHD three-dimensional non-Newtonian fluid flow over a porous stretching/shrinking sheet in the presence of mass transpiration and thermal radiation is examined. This problem mainly focusses on an analytical solution; graphene water is immersed in the flow of a fluid to enhance the thermal efficiency. The given non-linear PDEs are mapped into ODEs via suitable transformations, then the solution is obtained in terms of incomplete gamma function. The momentum equation is analyzed, and to derive the mass transpiration analytically, this mass transpiration is used in the heat transfer analysis and to find the analytical results with a Biot number. Physical significance parameters, including volume fraction, skin friction, mass transpiration, and thermal radiation, can be analyzed with the help of graphical representations. We indicate the unique solution at stretching sheet and multiple solution at shrinking sheet. The physical scenario can be understood with the help of different physical parameters, namely a Biot number, magnetic parameter, inverse Darcy number, Prandtl number, and thermal radiation; these physical parameters control the analytical results. Graphene nanoparticles are used to analyze the present study, and the value of the Prandtl number is fixed to 6.2. The graphical representations help to discuss the results of the present work. This problem is used in many industrial applications such as Polymer extrusion, paper production, metal cooling, glass blowing, etc. At the end of this work, we found that the velocity and temperature profile increases with the increasing values of the viscoelastic parameter and solid volume fraction; additionally, efficiency is increased for higher values of thermal radiation.

Journal ArticleDOI
TL;DR: In this paper, a wideband and high-gain rectangular microstrip array antenna with a new frequency-selective surface (FSS) designed as a reflector for the sub-6 5G applications is presented.
Abstract: This paper presents a wideband and high-gain rectangular microstrip array antenna with a new frequency-selective surface (FSS) designed as a reflector for the sub-6 5G applications. The proposed antenna is designed to meet the US Federal Communications Commission (FCC) standard for 5G in the mid-band (3.5–5 GHz) applications. The designed antenna configuration consists of 1 × 4 rectangular microstrip array antenna with an FSS reflector to produce a semi-stable high radiation gain. The modeled FSS delivered a wide stopband transmission coefficient from 3.3 to 5.6 GHz and promised a linearly declining phase over the mid-band frequencies. An equivalent circuit (EC) model is additionally performed to verify the transmission coefficient of the proposed FSS structure for wideband signal propagation. A low-cost FR-4 substrate material was used to fabricate the antenna prototype. The proposed wideband array antenna with an FSS reflector attained a bandwidth of 2.3 GHz within the operating frequency range of 3.5–5.8 GHz, with a fractional bandwidth of 51.12%. A high gain of 12.4 dBi was obtained at 4.1 GHz with an improvement of 4.4 dBi compared to the antenna alone. The gain variation was only 1.0 dBi during the entire mid-band. The total dimension of the fabricated antenna prototype is 10.32 λo × 4.25 λo ×1.295 λo at a resonance frequency of 4.5 GHz. These results make the presented antenna appropriate for 5G sub-6 GHz applications.

Journal ArticleDOI
TL;DR: In this article , a review of the literature on in situ detection, generation, effects, and countermeasures of spatter in laser powder bed fusion (L-PBF) additive manufacturing is presented.
Abstract: Spatter is an inherent, unpreventable, and undesired phenomenon in laser powder bed fusion (L-PBF) additive manufacturing. Spatter behavior has an intrinsic correlation with the forming quality in L-PBF because it leads to metallurgical defects and the degradation of mechanical properties. This impact becomes more severe in the fabrication of large-sized parts during the multi-laser L-PBF process. Therefore, investigations of spatter generation and countermeasures have become more urgent. Although much research has provided insights into the melt pool, microstructure, and mechanical property, reviews of spatter in L-PBF are still limited. This work reviews the literature on the in situ detection, generation, effects, and countermeasures of spatter in L-PBF. It is expected to pave the way towards a novel generation of highly efficient and intelligent L-PBF systems.

Journal ArticleDOI
TL;DR: In this paper , the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra, showing that at molar ratios of Ag:H2O2 = 1:1 and 1:5, dependences of changes in the intensity, position and half width of the absorption band of the plasmon resonance are rectilinear.
Abstract: In this work, we obtained silver nanoparticles stabilized with polyvinylpyrrolidone, ranging in size from 70 to 110 nm, which exhibits good crystallinity and anisotropic structure. For the first time, we studied the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra. Our results showed that at molar ratios of Ag:H2O2 = 1:1 and 1:5, dependences of changes in the intensity, position and half-width of the absorption band of the plasmon resonance are rectilinear. In vivo studies of silver nanoparticles have shown that silver nanoparticles belong to the toxicity class III (moderately hazardous substance) and to the third group according to the degree of accumulation. We established that silver nanoparticles and oxidized silver nanoparticles form a uniform layer on the surface of the suture material. We found that the use of the suture material with silver nanoparticles and oxidized silver nanoparticles does not cause allergic reactions in the organisms of laboratory animals.

Journal ArticleDOI
TL;DR: Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH2 groups as discussed by the authors .
Abstract: Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH2 groups. The presence of NH2 groups allows for the facile grafting of functionalized molecules onto the chitosan surface, resulting in multifunctional materialistic applications. Quaternization of chitosan’s free amino is one of the typical chemical modifications commonly achieved under acidic conditions. This quaternization improves its ionic character, making it ready for ionic–ionic surface modification. Although the cationic nature of chitosan alone exhibits antibacterial activity because of its interaction with negatively-charged bacterial membranes, the nanoscale size of chitosan further amplifies its antibiofilm activity. Additionally, the researcher used chitosan nanoparticles as polymeric materials to encapsulate antibiofilm agents (such as antibiotics and natural phytochemicals), serving as an excellent strategy to combat biofilm-based secondary infections. This paper provided a summary of available carbohydrate-based biopolymers as antibiofilm materials. Furthermore, the paper focuses on chitosan nanoparticle-based encapsulation of basil essential oil (Ocimum basilicum), mandarin essential oil (Citrus reticulata), Carum copticum essential oil (“Ajwain”), dill plant seed essential oil (Anethum graveolens), peppermint oil (Mentha piperita), green tea oil (Camellia sinensis), cardamom essential oil, clove essential oil (Eugenia caryophyllata), cumin seed essential oil (Cuminum cyminum), lemongrass essential oil (Cymbopogon commutatus), summer savory essential oil (Satureja hortensis), thyme essential oil, cinnamomum essential oil (Cinnamomum zeylanicum), and nettle essential oil (Urtica dioica). Additionally, chitosan nanoparticles are used for the encapsulation of the major essential components carvacrol and cinnamaldehyde, the encapsulation of an oil-in-water nanoemulsion of eucalyptus oil (Eucalyptus globulus), the encapsulation of a mandarin essential oil nanoemulsion, and the electrospinning nanofiber of collagen hydrolysate–chitosan with lemon balm (Melissa officinalis) and dill (Anethum graveolens) essential oil.

Journal ArticleDOI
TL;DR: In this paper , an endovascular catheterization robotic system (ECRS) was developed to improve collaborative operation and haptic force feedback, which generally depend on the flexible operability and the accurate force feedback of a robotic system.
Abstract: Robot-assisted technology is often used to perform endovascular catheterization surgeries, which generally depend on the flexible operability and the accurate force feedback of a robotic system. In this paper, an endovascular catheterization robotic system (ECRS) was developed to improve collaborative operation and haptic force feedback. A couple of operating handles were designed to maximize the use of the natural operations of surgeons on the master side, which is a flexible and ergonomic device. A magnetically controlled haptic force feedback structure is proposed based on hydrogel and solid magnetorheological (MR) fluid to offer a sense of haptic feedback to operators; this has potential influence on the field of force feedback. In addition, a unique tremor-reduction structure is introduced to enhance operating safety. Tracking performance experiments and in vitro experiments were conducted to evaluate the performance of the developed ECRS. According to these experimental results, the average translation-tracking error is 0.94 mm, and the average error of rotation is 0.89 degrees. Moreover, in vitro experiments demonstrated that haptic feedback has the advantage of reducing workload and shortening surgery completion time. The developed ECRS also has the benefits of inspiring other researchers to study collaborative robots and magnetically controlled feedback.

Journal ArticleDOI
TL;DR: An overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications is provided in this paper , which has evolved in the past years.
Abstract: The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for fulfilling tasks normally carried out by macroscopic systems. Although their presence is found throughout all the aspects of daily life, recent years have witnessed countless research works involving the application of MEMS within the biomedical field, especially in drug synthesis and delivery, microsurgery, microtherapy, diagnostics and prevention, artificial organs, genome synthesis and sequencing, and cell manipulation and characterization. Their tremendous potential resides in the advantages offered by their reduced size, including ease of integration, lightweight, low power consumption, high resonance frequency, the possibility of integration with electrical or electronic circuits, reduced fabrication costs due to high mass production, and high accuracy, sensitivity, and throughput. In this context, this paper aims to provide an overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications, which have evolved in the past years.

Journal ArticleDOI
TL;DR: In this article , the ternary hybrid nanofluid flow is modeled in the form of a system of partial differential equations, which are subsequently simplified to a set of ordinary differential equations through resemblance substitution.
Abstract: Despite the recycling challenges in ionic fluids, they have a significant advantage over traditional solvents. Ionic liquids make it easier to separate the end product and recycle old catalysts, particularly when the reaction media is a two-phase system. In the current analysis, the properties of transient, electroviscous, ternary hybrid nanofluid flow through squeezing parallel infinite plates is reported. The ternary hybrid nanofluid is synthesized by dissolving the titanium dioxide (TiO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2) nanoparticles in the carrier fluid glycol/water. The purpose of the current study is to maximize the energy and mass transfer rate for industrial and engineering applications. The phenomena of fluid flow is studied, with the additional effects of the magnetic field, heat absorption/generation, chemical reaction, and activation energy. The ternary hybrid nanofluid flow is modeled in the form of a system of partial differential equations, which are subsequently simplified to a set of ordinary differential equations through resemblance substitution. The obtained nonlinear set of dimensionless ordinary differential equations is further solved, via the parametric continuation method. For validity purposes, the outcomes are statistically compared to an existing study. The results are physically illustrated through figures and tables. It is noticed that the mass transfer rate accelerates with the rising values of Lewis number, activation energy, and chemical reaction. The velocity and energy transfer rate boost the addition of ternary NPs to the base fluid.

Journal ArticleDOI
TL;DR: This paper is a review of the state-of-the art SiC technology and discusses cutting-edge device applications where SiC medical devices are poised to translate to the commercial marketplace.
Abstract: Silicon carbide (SiC) is a highly robust semiconductor material that has the potential to revolutionize implantable medical devices for human healthcare, such as biosensors and neuro-implants, to enable advanced biomedical therapeutic applications for humans. SiC is both bio and hemocompatible, and is already commercially used for long-term human in vivo applications ranging from heart stent coatings and dental implants to short-term diagnostic applications involving neural implants and sensors. One challenge facing the medical community today is the lack of biocompatible materials which are inherently smart or, in other words, capable of electronic functionality. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it does not directly interact with biological tissue or has a short lifetime due to instabilities in vivo. Long-term, permanently implanted devices such as glucose sensors, neural interfaces, smart bone and organ implants, etc., require a more robust material that does not degrade over time and is not recognized and rejected as a foreign object by the inflammatory response. SiC has displayed these exceptional material properties, which opens up a whole new host of applications and allows for the development of many advanced biomedical devices never before possible for long-term use in vivo. This paper is a review of the state-of-the art and discusses cutting-edge device applications where SiC medical devices are poised to translate to the commercial marketplace.

Journal ArticleDOI
TL;DR: An overview of the revolution of TinyML and a review of tinyML studies is provided, wherein the main contribution is to provide an analysis of the type of ML models used intinyML studies and the details of datasets and the types and characteristics of the devices.
Abstract: Recently, the Internet of Things (IoT) has gained a lot of attention, since IoT devices are placed in various fields. Many of these devices are based on machine learning (ML) models, which render them intelligent and able to make decisions. IoT devices typically have limited resources, which restricts the execution of complex ML models such as deep learning (DL) on them. In addition, connecting IoT devices to the cloud to transfer raw data and perform processing causes delayed system responses, exposes private data and increases communication costs. Therefore, to tackle these issues, there is a new technology called Tiny Machine Learning (TinyML), that has paved the way to meet the challenges of IoT devices. This technology allows processing of the data locally on the device without the need to send it to the cloud. In addition, TinyML permits the inference of ML models, concerning DL models on the device as a Microcontroller that has limited resources. The aim of this paper is to provide an overview of the revolution of TinyML and a review of tinyML studies, wherein the main contribution is to provide an analysis of the type of ML models used in tinyML studies; it also presents the details of datasets and the types and characteristics of the devices with an aim to clarify the state of the art and envision development requirements.

Journal ArticleDOI
TL;DR: 3D printing of microneedle arrays (MNAs) toward enabling point-of-care (POC) biosensing applications and target molecules/biomarkers are detected by the biosensor using the sample collected with the MNs.
Abstract: Microneedles (MNs) are an emerging technology for user-friendly and minimally invasive injection, offering less pain and lower tissue damage in comparison to conventional needles. With their ability to extract body fluids, MNs are among the convenient candidates for developing biosensing setups, where target molecules/biomarkers are detected by the biosensor using the sample collected with the MNs. Herein, we discuss the 3D printing of microneedle arrays (MNAs) toward enabling point-of-care (POC) biosensing applications.

Journal ArticleDOI
TL;DR: In this paper , a review of ultrasonic ranging technology and its development history and future trend is presented, including the principles of each method, the signal processing methodologies, the overall system performance as well as key ultrasonic transducer parameters.
Abstract: Ultrasonic ranging has been widely used in automobiles, unmanned aerial vehicles (UAVs), robots and other fields. With the appearance of micromachined ultrasonic transducers (MUTs), the application of ultrasonic ranging technology presents a more extensive trend. This review focuses on ultrasonic ranging technology and its development history and future trend. Going through the state-of-the-art ultrasonic ranging methods, this paper covers the principles of each method, the signal processing methodologies, the overall system performance as well as key ultrasonic transducer parameters. Moreover, the error sources and compensation methods of ultrasonic ranging systems are discussed. This review aims to give an overview of the ultrasonic ranging technology including its current development and challenges.

Journal ArticleDOI
TL;DR: A review of various calibration techniques of MEMS inertial sensors is presented in this article , where the authors summarize the calibration schemes into two general categories: autonomous and non-autonomous calibration.
Abstract: A review of various calibration techniques of MEMS inertial sensors is presented in this paper. MEMS inertial sensors are subject to various sources of error, so it is essential to correct these errors through calibration techniques to improve the accuracy and reliability of these sensors. In this paper, we first briefly describe the main characteristics of MEMS inertial sensors and then discuss some common error sources and the establishment of error models. A systematic review of calibration methods for inertial sensors, including gyroscopes and accelerometers, is conducted. We summarize the calibration schemes into two general categories: autonomous and nonautonomous calibration. A comprehensive overview of the latest progress made in MEMS inertial sensor calibration technology is presented, and the current state of the art and development prospects of MEMS inertial sensor calibration are analyzed with the aim of providing a reference for the future development of calibration technology.