scispace - formally typeset
Search or ask a question

Showing papers by "David C. Page published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors quantified X and Xa gene expression in individuals with one Xa and zero to three Xis and found that modulation of Xa transcript levels by Xi contributes to many of these Xi-driven changes (≥121 genes).
Abstract: The “inactive” X chromosome (Xi) has been assumed to have little impact, in trans, on the “active” X (Xa). To test this, we quantified Xi and Xa gene expression in individuals with one Xa and zero to three Xis. Our linear modeling revealed modular Xi and Xa transcriptomes and significant Xi-driven expression changes for 38% (162/423) of expressed X chromosome genes. By integrating allele-specific analyses, we found that modulation of Xa transcript levels by Xi contributes to many of these Xi-driven changes (≥121 genes). By incorporating metrics of evolutionary constraint, we identified 10 X chromosome genes most likely to drive sex differences in common disease and sex chromosome aneuploidy syndromes. We conclude that human X chromosomes are regulated both in cis, through Xi-wide transcriptional attenuation, and in trans, through positive or negative modulation of individual Xa genes by Xi. The sum of these cis and trans effects differs widely among genes.

4 citations


Journal ArticleDOI
TL;DR: The authors conducted a scoping review of the existing literature on disparities in prehospital care delivery for patients identifying as members of an underrepresented race, ethnicity, sex, gender, or sexual orientation group.

4 citations


Journal ArticleDOI
TL;DR: In this paper , the frequency of AEs following emergent prehospital sedation with three types of sedative agents: ketamine, benzodiazepines and antipsychotics was investigated.

2 citations


Journal ArticleDOI
01 Sep 2022-Cancers
TL;DR: A machine learning technique is utilized to correlate the levels of 58 secreted proteins in tumor ascites with the time to disease recurrence after chemotherapy, known clinically as the platinum-free interval, and identifies several candidate proteins correlated to shorter or longer platinum- free intervals.
Abstract: Simple Summary Identifying proteins that correlate with better or worse outcomes may help to identify new treatment approaches for advanced high-grade serous ovarian cancer. Here, we utilize a machine learning technique to correlate the levels of 58 secreted proteins in tumor ascites with the time to disease recurrence after chemotherapy, which is known clinically as the platinum-free interval. We identify several candidate proteins correlated to shorter or longer platinum-free intervals and describe model analysis methods that may be useful for other studies aiming to identify factors impacting patient outcomes. Future validation of these factors in a prospective cohort would confirm their clinical utility, whereas a study of the mechanisms that they impact may identify new therapies. Abstract The time between the last cycle of chemotherapy and recurrence, the platinum-free interval (PFI), predicts overall survival in high-grade serous ovarian cancer (HGSOC). To identify secreted proteins associated with a shorter PFI, we utilized machine learning to predict the PFI from ascites composition. Ascites from stage III/IV HGSOC patients treated with neoadjuvant chemotherapy (NACT) or primary debulking surgery (PDS) were screened for secreted proteins and Lasso regression models were built to predict the PFI. Through regularization techniques, the number of analytes used in each model was reduced; to minimize overfitting, we utilized an analysis of model robustness. This resulted in models with 26 analytes and a root-mean-square error (RMSE) of 19 days for the NACT cohort and 16 analytes and an RMSE of 7 days for the PDS cohort. High concentrations of MMP-2 and EMMPRIN correlated with a shorter PFI in the NACT patients, whereas high concentrations of uPA Urokinase and MMP-3 correlated with a shorter PFI in PDS patients. Our results suggest that the analysis of ascites may be useful for outcome prediction and identified factors in the tumor microenvironment that may lead to worse outcomes. Our approach to tuning for model stability, rather than only model accuracy, may be applicable to other biomarker discovery tasks.

2 citations


Journal ArticleDOI
TL;DR: RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes that support TAF7L mutation as a risk factor for oligozoospermia in humans.
Abstract: Abstract Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans. Summary Sentence A sequencing screen of infertile men identifies a missense mutation in the human TAF7L gene.

2 citations


Journal ArticleDOI
TL;DR: This article found that PRSSLY is broadly conserved across eutherians and has ancient origins, indicating that it was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals.
Abstract: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history.We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls.PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.

1 citations


Journal ArticleDOI
TL;DR: This paper found that PRSSLY is broadly conserved across eutherians and has ancient origins, indicating that it was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals.
Abstract: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history.We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls.PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.

1 citations


Posted ContentDOI
26 Aug 2022-bioRxiv
TL;DR: The results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical for the continued production of sperm and, ultimately, the transmission of genetic material to the next generation.
Abstract: Polycomb group (PcG) proteins maintain the repressed state of lineage-inappropriate genes and are therefore essential for embryonic development and adult tissue homeostasis. One critical function of PcG complexes is modulating chromatin structure. Canonical Polycomb repressive complex 1 (cPRC1), particularly its component CBX2, can compact chromatin and phase separate in vitro. These activities are hypothesized to be critical for forming a repressed physical environment in cells. While much has been learned by studying these PcG activities in cell culture models, it is largely unexplored how cPRC1 regulates adult stem cells and their subsequent differentiation during tissue homeostasis in living animals. Here, we show that CBX2 is upregulated as spermatogonial stem cells differentiate and is required in the differentiating spermatogonia of the male germ line. CBX2 forms condensates, similar to previously described Polycomb bodies, that co-localize with repressed target genes in differentiating spermatogonia. Single cell analyses of mosaic Cbx2 mutant testes show CBX2 is specifically required to produce differentiating, A1 spermatogonia. Furthermore, the domain of CBX2 responsible for compaction and phase separation is needed for the long-term maintenance of male germ cells in the animal. These results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical for the continued production of sperm and, ultimately, the transmission of genetic material to the next generation.

Journal ArticleDOI
TL;DR: In this article , molecular markers distinguishing the transcriptional profile of trophectoderm (TE) from inner cell mass (ICM) cells in the preimplantation human blastocyst using targeted biopsies of each component.

Journal ArticleDOI
TL;DR: In this article , the authors describe the successful Chilliwack (CFP) primary healthcare, team-based, medical clinic with its own diabetes nurse since 2007; and compare diabetes quality indicators, performance measures & clinical outcomes from the Chilliwacks CFP clinic to BC as a province & to its FHA geographical/regional catchment area.