scispace - formally typeset
Search or ask a question

Showing papers by "Deidre A. Hunter published in 2001"


Journal ArticleDOI
TL;DR: In this paper, the authors present measurements by the Infrared Space Observatory Long Wavelength Spectrometer of seven lines from neutral and ionized ISM of 60 normal, star-forming galaxies.
Abstract: The most important cooling lines of the neutral interstellar medium (ISM) lie in the far-infrared (FIR). We present measurements by the Infrared Space Observatory Long Wavelength Spectrometer of seven lines from neutral and ionized ISM of 60 normal, star-forming galaxies. The galaxy sample spans a range in properties such as morphology, FIR colors (indicating dust temperature), and FIR/blue ratios (indicating star formation activity and optical depth). In two-thirds of the galaxies in this sample, the [C II] line flux is proportional to FIR dust continuum. The other one-third show a smooth decline in L[C II]/LFIR with increasing Fν(60 μm)/Fν(100 μm) and LFIR/LB, spanning a range of a factor of more than 50. Two galaxies at the warm and active extreme of the range have L[C II]/LFIR < 2 × 10-4 (3 σ upper limit). This is due to increased positive grain charge in the warmer and more active galaxies, which leads to less efficient heating by photoelectrons from dust grains. The ratio of the two principal photodissociation region (PDR) cooling lines L[O I]/L[C II] shows a tight correlation with Fν(60 μm)/Fν(100 μm), indicating that both gas and dust temperatures increase together. We derive a theoretical scaling between [N II] (122 μm) and [C II] from ionized gas and use it to separate [C II] emission from neutral PDRs and ionized gas. Comparison of PDR models of Kaufman et al. with observed ratios of (1) L[O I]/L[C II] and (L[C II] + L[O I])/LFIR and (2) L[O I]/LFIR and Fν(60 μm)/Fν(100 μm) yields far-UV flux G0 and gas density n. The G0 and n values estimated from the two methods agree to better than a factor of 2 and 1.5, respectively, in more than half the sources. The derived G0 and n correlate with each other, and G0 increases with n as G0 ∝ nα, where α ≈ 1.4 . We interpret this correlation as arising from Stromgren sphere scalings if much of the line and continuum luminosity arises near star-forming regions. The high values of PDR surface temperature (270-900 K) and pressure (6 × 104-1.5 × 107 K cm-3) derived also support the view that a significant part of grain and gas heating in the galaxies occurs very close to star-forming regions. The differences in G0 and n from galaxy to galaxy may be due to differences in the physical properties of the star-forming clouds. Galaxies with higher G0 and n have larger and/or denser star-forming clouds.

465 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented deep UBVJHK Hα images and H I maps of the irregular galaxy NGC 2366, showing that the star formation activity drops off with radius approximately as the starlight in the inner part of the galaxy but it drops faster in the outer part.
Abstract: We present deep UBVJHK Hα images and H I maps of the irregular galaxy NGC 2366. Optically, NGC 2366 is a boxy-shaped exponential disk seen at high inclination angle. The scale length and central surface brightness of the disk are normal for late-type galaxies. Although NGC 2366 has been classified as a barred Im galaxy, we do not see any unambiguous observational signature of a bar. There is an asymmetrical extension of stars along one end of the major axis of the galaxy, and this is where the furthest star-forming regions are found, at a radius of 1.3 times the Holmberg radius. The star formation activity of the galaxy is dominated by the supergiant H II complex NGC 2363, but the global star formation rate for NGC 2366 is only moderately elevated relative to other Im galaxies. The star formation activity drops off with radius approximately as the starlight in the inner part of the galaxy but it drops faster in the outer part. There are some peculiar features of the H I distribution and kinematics. First, the integrated H I shows two ridges running parallel to the major axis that when deprojected appear as a large ring. Second, the velocity field exhibits several large-scale anomalies superposed on a rotating disk; some of these may be from a weak bar that has no inner Lindblad resonance. Third, the inclination and position angles derived from the kinematics differ from those derived from the optical and H I morphology. Fourth, there are regions in the H I of unusually high velocity dispersion, but these regions are not associated with the optical galaxy nor any obvious H I feature. Instead the velocity dispersion correlates with a deficit of H I emission in a manner suggestive of long-range, turbulent pressure equilibrium. In other respects the H I is fairly normal. The azimuthally averaged surface density of H I is comparable to that of other irregulars in the inner part of the galaxy but drops off slower and extends further in the outer parts. The H I around the star-forming complex NGC 2363 is fairly unremarkable. As in other disk galaxies, the gas in NGC 2366 is lumpy and star-forming regions are associated with these H I complexes. H II regions are found where the gas densities locally exceed 6 M☉ pc-2. This threshold is required to provide a cool phase of H I as a first step toward star formation. NGC 2366, like other irregulars, has low gas densities relative to the critical gas densities of gravitational instability models, so large-scale gravitational instabilities operate slowly or not at all. Considering the lack of shear in the optical part of this galaxy, the relative slowness of such instabilities may not be a problem—there is little competition to the slow gravitational contraction that follows energy dissipation. This differs from the situation in giant spiral disks where the shear time is short, comparable to the energy dissipation time, and strong self-gravity is required for a condensation to grow and dissipate its turbulent energy before it shears away. The subthreshold surface densities are also not unusual if they are viewed using the critical tidal density for gravitational self-binding of a rotating cloud, rather than the critical surface density from the usual disk instability condition. The peak densities in all regions of star formation are equal to the local tidal densities, giving an agreement between these two quantities that is much better than between the surface density and the critical value. Evidently the large-scale gas concentrations are all marginally bound against background galactic tidal forces. This condition for self-binding may be more fundamental than the instability condition because it is local, three-dimensional, and does not involve spiral arm generation as an intermediate step toward star formation.

88 citations


Journal ArticleDOI
TL;DR: In this article, the UBVJHKHalpha and HI data of the irregular galaxy NGC 2366 are presented, which is a normal boxy-shaped disk seen at high inclination angle.
Abstract: We present UBVJHKHalpha and HI data of the irregular galaxy NGC 2366. It is a normal boxy-shaped disk seen at high inclination angle. We do not see any unambiguous observational signature of a bar. There is an asymmetrical extension of stars along one end of the major axis of the galaxy, and this is where the furthest star-forming regions are found, at 1.3R_Holmberg. The HI is normal in many respects but shows some anomalies: 1) The integrated HI shows two ridges running parallel to the major axis that deproject to a large ring. 2) The velocity field exhibits several large-scale anomalies superposed on a rotating disk. 3) The inclination and position angles derived from the kinematics differ from those dervied from the optical and HI mor- phology. 4) There are regions in the HI of unusually high velocity dispersion that correlate with deficits of HI emission in a manner suggestive of long-range, turbulent pressure equilibrium. Star-forming regions are found where the gas densities locally exceed 6 Msolar/pc^2. NGC 2366, like other irregulars, has low gas densities relative to the critical gas densities of gravitational instability models. Because of the lack of shear in the optical galaxy, there is little competition to the slow gravitational contraction that follows energy dissipation. However, the peak gas densities in the star-forming regions are equal to the local tidal densities for gravitational self-binding of a rotating cloud. Evidently the large scale gas concentrations are marginally bound against background galactic tidal forces. This condition for self-binding may be more fundamental than the instability condition because it is local, three-dimensional, and does not involve spiral arm generation as an intermediate step toward star formation.

77 citations