scispace - formally typeset
Search or ask a question

Showing papers by "Erhard Bremer published in 1994"


Journal ArticleDOI
TL;DR: The properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes are discussed and the importance of compatible solutes for bacteria is discussed.
Abstract: A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Escherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K(+)-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K(+)-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less deleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.

264 citations


Journal ArticleDOI
TL;DR: The negative effect of H-NS on proU transcription was mediated by cis-acting sequences within proV but did not depend on the presence of a curved DNA segment upstream of the proU-35 region previously characterized as a target for H- NS binding in vitro.

209 citations


Journal ArticleDOI
TL;DR: Choline and glycine betaine were not used as sole sources of carbon or nitrogen, consistent with their functional role in the process of adaptation of B. subtilis to high-osmolarity stress.
Abstract: Exogenously provided glycine betaine functions as an efficient osmoprotectant for Bacillus subtilis in high-osmolarity environments. This gram-positive soil organism is not able to increase the intracellular level of glycine betaine through de novo synthesis in defined medium (A. M. Whatmore, J. A. Chudek, and R. H. Reed, J. Gen. Microbiol. 136:2527-2535, 1990). We found, however, that B. subtilis can synthesize glycine betaine when its biosynthetic precursor, choline, is present in the growth medium. Uptake studies with radiolabelled [methyl-14C]choline demonstrated that choline transport is osmotically controlled and is mediated by a high-affinity uptake system. Choline transport of cells grown in low- and high-osmolarity media showed Michaelis-Menten kinetics with Km values of 3 and 5 microM and maximum rates of transport (Vmax) of 10 and 36 nmol min-1 mg of protein-1, respectively. The choline transporter exhibited considerable substrate specificity, and the results of competition experiments suggest that the fully methylated quaternary ammonium group is a key feature for substrate recognition. Thin-layer chromatography revealed that the radioactivity from exogenously provided [methyl-14C]choline accumulated intracellularly as [methyl-14C]glycine betaine, demonstrating that B. subtilis possesses enzymes for the oxidative conversion of choline into glycine betaine. Exogenously provided choline significantly increased the growth rate of B. subtilis in high-osmolarity media and permitted its proliferation under conditions that are otherwise strongly inhibitory for its growth. Choline and glycine betaine were not used as sole sources of carbon or nitrogen, consistent with their functional role in the process of adaptation of B. subtilis to high-osmolarity stress.

206 citations


Journal ArticleDOI
TL;DR: It is shown that the ability to cope efficiently with a cold environment is strongly impaired in E. coli strains carrying hns mutations, and synthesis of a truncated H-NS protein with only 75 amino-terminal amino acids was insufficient to restore growth at low temperature.
Abstract: The hns gene is a member of the cold-shock regulon, indicating that the nucleoid-associated, DNA-binding protein H-NS plays an important role in the adaptation of Escherichia coli to low temperatures. We show here that the ability to cope efficiently with a cold environment (12°C and 25°C) is strongly impaired in E. coli strains carrying hns mutations. Growth inhibition is much more pronounced in strains carrying the hns-206 allele (an ampicillin resistance cassette inserted after codon 37) than in those carrying the hns-205 mutation (a Tn10 insertion located in codon 93). A protein fragment (H-NS*) is synthesized in strains carrying the hns-205::Tn10 mutation, suggesting that this truncated polypeptide is partially functional in the cold adaptation process. Analysis of the growth properties of strains harbouring four different low-copy-number plasmid-encoded hns genes that result in the production of C-terminally truncated H-NS proteins supports this proposal. H-NS* proteins composed of 133, 117 or 94 amino-terminal amino acids partially complemented the severe cold-sensitive growth phenotype of the hns-206 mutant. In contrast, synthesis of a truncated H-NS protein with only 75 amino-terminal amino acids was insufficient to restore growth at low temperature.

105 citations


Journal ArticleDOI
TL;DR: A set of low-copy-number vectors (pPD) has been constructed that permit selective gene expression and high-level protein overproduction in Escherichia coli, based on the bacteriophage T7 RNA polymerase/T7 promoter system, and should prove very useful for the cloning and high the overexpression of genes whose gene products are deleterious to the E. coli host.
Abstract: A set of low-copy-number vectors (pPD) has been constructed that permit selective gene expression and high-level protein overproduction in Escherichia coli, based on the bacteriophage T7 RNA polymerase/T7 promoter system. These plasmids carry a chloramphenicol resistance gene (cat) as a selective marker and an extended multiple cloning site for convenient gene cloning. Their replication is mediated by ori sequences derived from the low-copy-number vector pSC101. The efficient T7 gene 10 promoter present on these vectors allows selective and high-level transcription of cloned genes carrying their own translational initiation signals. In addition, low-copy-number T7 vectors were constructed that permit expression of genes lacking their own transcription and translation initiation elements by providing a ribosome binding site, an ATG start codon and a multiple cloning site devised for the cloning in all three reading frames. The pPD expression vectors were used to achieve high-level overproduction of the E. coli integral outer membrane protein T SX , and the cytoplasmic enzymes β-galactosidase (βGal) and UTP:α- D -glucose-1-phosphate uridylytransferase (GalU). The characteristics of these low-copy-number T7 expression vectors should prove very useful for the cloning and high-level overexpression of genes whose gene products are deleterious to the E. coli host.

33 citations


Journal ArticleDOI
30 Dec 1994-Gene
TL;DR: A series of expression vectors permitting osmotically controlled expression of heterologous genes governed by regulatory signals of proU are constructed, and efficient transcription terminators derived from the rrnB operon prevent deleterious read-through transcription into the vector portion.

32 citations