scispace - formally typeset
Search or ask a question

Showing papers by "Erica Spackman published in 2019"


Journal ArticleDOI
10 Apr 2019-Vaccine
TL;DR: The results suggested that mutations in the HA antigenic sites including increased glycosylation sites, accumulated in the new circulating Mexican H7 HPAIV strains, altered the recognition of neutralizing antibodies from the older vaccine strain rFPV-H7/2155.

15 citations


Journal ArticleDOI
TL;DR: Investigation of gallinaceous species in the 2014–2015 Eurasian lineage clade 2.3.4.4A HPAI U.S. outbreak found endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues.
Abstract: In the 2014–2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80–100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.

11 citations


Journal ArticleDOI
TL;DR: Coupling quantitative disease models and natural transmission studies with new molecular technologies, such as deep-mutational scanning and single-virus sequencing of environmental samples, should dramatically improve the understanding of viral co-occurrence and reassortment.
Abstract: Reassortment is an evolutionary mechanism by which influenza A viruses (IAV) generate genetic novelty. Reassortment is an important driver of host jumps and is widespread according to retrospective...

10 citations


Journal ArticleDOI
TL;DR: The back-calculation approach provides a computationally efficient means to obtain reasonable transmission parameter estimates from mortality data for fatal poultry diseases, and demonstrated that the estimated β was highly sensitive to the bird-level latent period, emphasizing the need for its precise estimation.
Abstract: Better control of highly pathogenic avian influenza (HPAI) outbreaks requires deeper understanding of within-flock virus transmission dynamics. For such fatal diseases, daily mortality provides a proxy for disease incidence. We used the daily mortality data collected during the 2015 H5N2 HPAI outbreak in Minnesota turkey flocks to estimate the within-flock transmission rate parameter (β). The number of birds in Susceptible, Exposed, Infectious and Recovered compartments was inferred from the data and used in a generalised linear mixed model (GLMM) to estimate the parameters. Novel here was the correction of these data for normal mortality before use in the fitting process. We also used mortality threshold to determine HPAI-like mortality to improve the accuracy of estimates from the back-calculation approach. The estimated β was 3.2 (95% confidence interval (CI) 2.3-4.3) per day with a basic reproduction number of 12.8 (95% CI 9.2-17.2). Although flock-level estimates varied, the overall estimate was comparable to those from other studies. Sensitivity analyses demonstrated that the estimated β was highly sensitive to the bird-level latent period, emphasizing the need for its precise estimation. In all, for fatal poultry diseases, the back-calculation approach provides a computationally efficient means to obtain reasonable transmission parameter estimates from mortality data.

9 citations


Journal ArticleDOI
TL;DR: Although there were too few ducks available on which to draw definitive conclusions, this suggests that American black ducks could serve as a more efficient reservoir for the H5N2 virus than the H 5N8 virus.
Abstract: Highly pathogenic avian influenza virus (HPAIV) from the goose/Guangdong/1996 clade 2.3.4.4 H5 lineage spread from Asia into North America in 2014, most likely by wild bird migrations. Although several variants of the virus were detected, H5N8 and H5N2 were the most widespread in North American wild birds and domestic poultry. In early 2015, the H5N2 virus spread through commercial poultry in the Midwest, and >50 million chickens and turkeys died or had to be culled. Related H5 HPAIVs are still endemic in much of the Eastern Hemisphere. The wild bird species that were involved with dissemination of the virus in North America are not known. Dabbling ducks, especially mallards (Anas platyrhynchos), typically have the highest detection rates for avian influenza viruses. To better characterize the wild avian species that could spread the virus, American black ducks (Anas rubripes), which are closely related to mallards, were challenged with the North American H5N2 and H5N8 index HPAIV isolates: A/Northern Pintail/WA/40964/2014 H5N2 and A/Gyrfalcon/WA/41088/2014 H5N8. Although the American black ducks could be infected with low doses of both isolates (≤102 50% egg infective doses), ducks shed the H5N2 longer than the H5N8 (10 vs. 7 days) and the titers of virus shed were higher. Although there were too few ducks available on which to draw definitive conclusions, this suggests that American black ducks could serve as a more efficient reservoir for the H5N2 virus than the H5N8 virus.

7 citations


Journal ArticleDOI
TL;DR: In order to further elucidate AIV infection in diving ducks, the relative susceptibility and pathogenesis of two North American lineage H7 HPAIV isolates from the most recent outbreaks in the United States was investigated in this article.
Abstract: Waterfowl are the natural hosts of avian influenza virus (AIV), and through migration spread the virus worldwide. Most AIVs carried by wild waterfowl are low pathogenic strains; however, Goose/Guangdong/1996 lineage clade 2.3.4.4 H5 highly pathogenic (HP) AIV now appears to be endemic in wild birds in much of the Eastern Hemisphere. Most research efforts studying AIV pathogenicity in waterfowl thus far have been directed toward dabbling ducks. In order to better understand the role of diving ducks in AIV ecology, we previously characterized the pathogenesis of clade 2.3.4.4 H5 HPAIV in lesser scaup (Aythya affinis). In an effort to further elucidate AIV infection in diving ducks, the relative susceptibility and pathogenesis of two North American lineage H7 HPAIV isolates from the most recent outbreaks in the United States was investigated. Lesser scaup were inoculated with either A/turkey/IN/1403-1/2016 H7N8 or A/chicken/TN/17-007147-2/2017 H7N9 HPAIV by the intranasal route. The approximate 50% bird infectious dose (BID50) of the H7N8 isolate was determined to be 103 50% egg infectious doses (EID50), and the BID50 of the H7N9 isolate was determined to be <102 EID50, indicating some variation in adaptation between the two isolates. No mortality or clinical disease was observed in either group except for elevated body temperatures at 2 and 4 days postinoculation (DPI). Virus shedding was detected up to 14 DPI from both groups, and there was a trend for shedding to have a longer duration and at higher titer levels from the cloacal route. These results demonstrate that lesser scaup are susceptible to both H7 lineages of HPAIV, and similar to dabbling duck species, they shed virus for long periods relative to gallinaceous birds and don't present with clinical disease.

6 citations


Journal ArticleDOI
TL;DR: The data suggest that, in conjunction with a comprehensive eradication, enhanced biosecurity and controlled marketing plan, vaccination programmes of commercial layer chickens with novel RP vaccines may represent an important tool for preventing HPAI-related mortalities and decreasing viral load during a catastrophic influenza outbreak.
Abstract: The efficacies of an oil adjuvanted-inactivated reverse genetics-derived H5 avian influenza virus (AIV) vaccine and an alphavirus replicon RNA particle (RP) AIV vaccine were evaluated in commercial...

4 citations


Journal ArticleDOI
TL;DR: It is suggested that using fewer ECEs per dilution is a viable approach that will allow laboratories to reduce costs and improve efficiency.
Abstract: Embryonating chicken eggs (ECEs) are among the most sensitive laboratory host systems for avian influenza virus (AIV) titration, but ECEs are expensive and require space for storage and incubation. Therefore, reducing ECE use would conserve resources. We utilized statistical modeling to evaluate the accuracy and precision of AIV titration with 3 instead of 5 ECEs for each dilution by the Reed-Muench method for 50% endpoint calculation. Beta-Poisson and exponential dose-response models were used in a simulation study to evaluate observations from actual titration data from 18 AIV isolates. The reproducibility among replicates of a titration was evaluated with one AIV isolate titrated in 3 replicates with the beta-Poisson, exponential, and Weibull dose-response models. The standard deviation (SD) of the error between input and estimated virus titers was estimated with Monte Carlo simulations using the fitted dose-response models. Good fit was observed with all models that were utilized. Reducing the number of ECEs per dilution from 5 to 3 resulted in the width of the 95% confidence interval increasing from ±0.64 to ±0.75 log10 50% ECE infectious doses (EID50) and the SD of the error increased by 0.03 log10 EID50. Our study suggests that using fewer ECEs per dilution is a viable approach that will allow laboratories to reduce costs and improve efficiency.

4 citations