scispace - formally typeset
Search or ask a question

Showing papers by "Franz Rohrer published in 2020"


Journal ArticleDOI
TL;DR: Analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014, and reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain.
Abstract: The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature.

69 citations


Journal ArticleDOI
TL;DR: In this paper, the regeneration efficiency of the hydroxyl radical (OH) in isoprene is directly quantified for the first time through experiments covering a wide range of atmospherically relevant NO levels (between 0.15 and 2.3 parts per billion by volume) in the atmospheric simulation SAPHIR.
Abstract: . Theoretical, laboratory, and chamber studies have shown fast regeneration of the hydroxyl radical (OH) in the photochemistry of isoprene, largely due to unimolecular reactions which were previously thought not to be important under atmospheric conditions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospherically relevant NO levels (between 0.15 and 2 ppbv – parts per billion by volume) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to 1, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations, and the best agreement was observed when at least 50 % of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 ppbv. For these levels of NO, up to 50 % of the OH radicals are regenerated from the products of the 1,6 α -hydroxy-hydrogen shift (1,6-H shift) of Z- δ - RO2 radicals through the photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehydic hydrogen shift (rate constant ∼10 s −1 at 300 K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP- RO2 ), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy, and organic peroxy radicals, carbon monoxide, and the sum of methyl vinyl ketone, methacrolein, and hydroxyl hydroperoxides) is nearly independent of the adopted yield of HPALD and di-HPCARP- RO2 as both degrade relatively fast ( h), forming the OH radical and CO among other products. Taking into consideration this and earlier isoprene studies, considerable uncertainties remain on the distribution of oxygenated products, which affect radical levels and organic aerosol downwind of unpolluted isoprene-dominated regions.

36 citations


Journal ArticleDOI
TL;DR: In this article, the role of highly oxygenated multifunctional molecules (HOM) in the suppression of secondary organic aerosol (SOA) mass formation by NOx was investigated.
Abstract: . The formation of organic nitrates (ON) in the gas phase and their impact on mass formation of Secondary Organic Aerosol (SOA) was investigated in a laboratory study for α-pinene and β-pinene photo-oxidation. Focus was the elucidation of those mechanisms that cause the often observed suppression of SOA mass formation by NOx, and therein the role of highly oxygenated multifunctional molecules (HOM). We observed that with increasing NOx (a) the portion of HOM organic nitrates (HOM-ON) increased, (b) the fraction of accretion products (HOM-ACC) decreased and (c) HOM-ACC contained on average smaller carbon numbers. Specifically, we investigated HOM organic nitrates (HOM-ON), arising from the termination reactions of HOM peroxy radicals with NOx, and HOM permutation products (HOM-PP), such as ketones, alcohols or hydroperoxides, formed by other termination reactions. Effective uptake coefficients γeff of HOM on particles were determined. HOM with more than 6 O-atoms efficiently condensed on particles (γeff > 0.5 in average) and for HOM containing more than 8 O-atoms, every collision led to loss. There was no systematic difference in γeff for HOM-ON and HOM-PP arising from the same HOM peroxy radicals. This similarity is attributed to the multifunctional character of the HOM: as functional groups in HOM arising from the same precursor HOM peroxy radical are identical, vapor pressures should not strongly depend on the character the final termination group. As a consequence, the suppressing effect of NOx on SOA formation cannot be simply explained by replacement of terminal functional groups by organic nitrate groups. The fraction of organic bound nitrate (OrgNO3) stored in gas-phase HOM-ON appeared to be substantially higher than the fraction of particulate OrgNO3 observed by aerosol mass spectrometry. This result suggests losses of OrgNO3 for organic nitrates in particles, probably due to hydrolysis of OrgNO3 that releases HNO3 into the gas phase but leaves behind the organic rest in the particulate phase. However, the loss of HNO3 alone, could not explain the observed suppressing effect of NOx on particle mass formation from α-pinene and β-pinene. We therefore attributed most of the reduction in SOA mass yields with increasing NOx to the significant suppression of gas-phase HOM-ACC which have high molecular mass and are potentially important for SOA mass formation at low NOx conditions.

34 citations


Journal ArticleDOI
TL;DR: In a series of experiments in an atmospheric simulation chamber (SAPHIR, Forschungszentrum Julich, Germany) NO3 reactivity (kNO3) resulting from the reaction of NO3 with isoprene and stable trace gases formed as products was measured directly using a flow-tube reactor coupled to a cavity-ring-down spectrometer (FT-CRDS) as discussed by the authors.
Abstract: . In a series of experiments in an atmospheric simulation chamber (SAPHIR, Forschungszentrum Julich, Germany) NO3 reactivity (kNO3) resulting from the reaction of NO3 with isoprene and stable trace gases formed as products was measured directly using a flow-tube reactor coupled to a cavity-ring-down spectrometer (FT-CRDS). The experiments were carried out in both dry and humid air with variation of the initial mixing ratios of ozone (50–100 ppbv), isoprene (3–22 ppbv) and NO2 (5–30 ppbv). kNO3 was in excellent agreement with values calculated from the isoprene mixing ratio and the rate coefficient for the reaction of NO3 with isoprene. This result serves both to confirm that the FT-CRDS returns accurate values of kNO3 even at elevated NO2 concentrations and to show that reactions of NO3 with stable reaction products like non-radical organic nitrates do not contribute significantly to NO3 reactivity during the oxidation of isoprene. A comparison of kNO3 with NO3 reactivities calculated from NO3 mixing ratios and NO3 production rates suggests that organic peroxy radicals and HO2 account for ~ 50 % of NO3 losses. This contradicts predictions based on numerical simulations using the Master Chemical Mechanism (MCM version 3.3.1) unless the rate coefficient for reaction between NO3 and isoprene-derived RO2 is roughly doubled to ≈ 5 × 10−12 cm3 molecule−1 s−1.

11 citations


Journal ArticleDOI
TL;DR: In this paper, the photooxidation of pinonaldehyde, one product of α-pinene degradation, was investigated in the atmospheric simulation chamber SAPHIR under natural sunlight at low NO concentrations.
Abstract: . The photooxidation of pinonaldehyde, one product of the α-pinene degradation, was investigated in the atmospheric simulation chamber SAPHIR under natural sunlight at low NO concentrations (

8 citations


Posted ContentDOI
09 Mar 2020
TL;DR: In this article, three instruments using different measurement techniques were used to measure formaldehyde (HCHO) concentrations during experiments in the atmopshere simulation chamber SAPHIR at the Forschungszentrum Juelich.
Abstract: Three instruments using different measurement techniques were used to measure formaldehyde (HCHO) concentrations during experiments in the atmopshere simulation chamber SAPHIR at the Forschungszentrum Juelich. An AL4021 instrument by Aero Laser GmbH uses the wet-chemical Hantzsch reaction for efficient gas stripping, chemical conversion and fluorescence measurement. An internal permeation gas source provides daily calibrations characterized by sulfuric acid titration. A G2307 analyzer by PICARRO INC. uses Cavity Ring-Down Spectroscopy (CRDS) technique to determine concentrations of HCHO, water and methane. A high-resolution laser differential optical absorption spectroscopy (DOAS) instrument provided HCHO measurements along the central chamber axis using an optical multiple reflection cell. The measurements were conducted from June to December 2019 in experiments when ambient air was flowed through the chamber and also in photochemical experiments in synthetic air with mixtures of different reactants, water vapour, nitrogen oxides, and ozone concentrations. Results demonstrate the importance for a linear base line interpolation between zero measurements for the Hantzsch instrument. In addition, a strong water dependence of the baseline of CRDS measurements was found. After correction for the baselines, the correlation analysis of measurements demonstrate good agreement (R > 0.98) between the instruments.

1 citations