scispace - formally typeset
Search or ask a question

Showing papers by "Friedrich Lottspeich published in 2003"


Journal ArticleDOI
14 Feb 2003-Science
TL;DR: Chemical model reactions corroborate the feasibility of this unprecedented biosynthetic route and show that thiocyanates can donate CN to iron.
Abstract: NiFe-hydrogenases have an Ni-Fe site in which the iron has one CO and two CN groups as ligands. Synthesis of the CN ligands requires the activity of two hydrogenase maturation proteins: HypF and HypE. HypF is a carbamoyltransferase that transfers the carbamoyl moiety of carbamoyladenylate to the COOH-terminal cysteine of HypE and thus forms an enzyme-thiocarbamate. HypE dehydrates the S-carbamoyl moiety in an adenosine triphosphate-dependent process to yield the enzyme thiocyanate. Chemical model reactions corroborate the feasibility of this unprecedented biosynthetic route and show that thiocyanates can donate CN to iron. This finding underscores a striking parallel between biochemistry and organometallic chemistry in the formation of an iron-cyano complex.

208 citations


Journal ArticleDOI
TL;DR: Steady-state kinetic measurements with one heterologously expressed enzyme and mass spectrometric analysis of the enzymatic products suggested that this unusual enzyme is capable of carrying through sequential O-methylations on the isoquinoline and on the benzyl moiety of several substrates.
Abstract: S-Adenosyl-L-methionine:(R,S)-reticuline 7-O-methyltransferase converts reticuline to laudanine in tetrahydrobenzylisoquinoline biosynthesis in the opium poppy Papaver somniferum. This enzyme activity has not yet been detected in plants. A proteomic analysis of P. somniferum latex identified a gel spot that contained a protein(s) whose partial amino acid sequences were homologous to those of plant O-methyltransferases. cDNA was amplified from P. somniferum RNA by reverse transcription PCR using primers based on these internal amino acid sequences. Recombinant protein was then expressed in Spodoptera frugiperda Sf9 cells in a baculovirus expression vector. Steady-state kinetic measurements with one heterologously expressed enzyme and mass spectrometric analysis of the enzymatic products suggested that this unusual enzyme is capable of carrying through sequential O-methylations on the isoquinoline and on the benzyl moiety of several substrates. The tetrahydrobenzylisoquinolines (R)-reticuline (4.2 sec(-1) mm(-1)), (S)-reticuline (4.5 sec(-1) mm(-1)), (R)-protosinomenine (1.7 sec(-1) mm(-1)), and (R,S)-isoorientaline (1.4 sec(-1) mm(-1)) as well as guaiacol (5.9 sec(-1) mm(-1)) and isovanillic acid (1.2 sec(-1) mm(-1)) are O-methylated by the enzyme with the ratio kcat/K m shown in parentheses. A P. somniferum cDNA encoding (R,S)-norcoclaurine 6-O-methyltransferase was similarly isolated and characterized. This enzyme was less permissive, methylating only (R,S)-norcoclaurine (7.4 sec(-1) mm(-1)), (R)-norprotosinomenine (4.1 sec(-1) mm(-1)), (S)-norprotosinomenine (4.0 sec(-1) mm(-1)) and (R,S)-isoorientaline (1.0 sec(-1) mm(-1)). A phylogenetic comparison of the amino acid sequences of these O-methyltransferases to those from 28 other plant species suggests that these enzymes group more closely to isoquinoline biosynthetic O-methyltransferases from Coptis japonica than to those from Thalictrum tuberosum that can O-methylate both alkaloid and phenylpropanoid substrates.

151 citations


Journal ArticleDOI
TL;DR: Comparison of experimental data from different organisms shows that the minimal core of the exosome consists of at least one phosphate‐dependent ribonuclease PH homologue, and of Rrp4 and Csl4, which suggests an RNA‐related function for the archaeal DnaG‐like proteins.
Abstract: We present the first experimental evidence for the existence of an exosome-like protein complex in Archaea. In Eukarya, the exosome is essential for many pathways of RNA processing and degradation. Co-immunoprecipitation with antibodies directed against the previously predicted Sulfolobus solfataricus orthologue of the exosome subunit ribosomal-RNA-processing protein 41 (Rrp41) led to the purification of a 250-kDa protein complex from S. solfataricus. Approximately half of the complex cosediments with ribosomal subunits. It comprises four previously predicted orthologues of the core exosome subunits from yeast (Rrp41, Rrp42, Rrp4 and Csl4 (cep1 synthetic lethality 4; an RNA-binding protein and exosome subunit)), whereas other predicted subunits were not found. Surprisingly, the archaeal homologue of the bacterial DNA primase DnaG was tightly associated with the complex. This suggests an RNA-related function for the archaeal DnaG-like proteins. Comparison of experimental data from different organisms shows that the minimal core of the exosome consists of at least one phosphate-dependent ribonuclease PH homologue, and of Rrp4 and Csl4. Such a protein complex was probably present in the last common ancestor of Archaea and Eukarya.

141 citations


Journal ArticleDOI
TL;DR: A phylogenetic analysis of the SR amino acid sequence revealed that the protein belonged to the DMSO reductase family of molybdoenzymes and that the family showed a novel clustering.
Abstract: A sulfur reductase (SR) and a hydrogenase were purified from solubilized membrane fractions of anaerobically grown cells of the sulfur-dependent archaeon Acidianus ambivalens and the corresponding genes were sequenced The SR reduced elemental sulfur with hydrogen as electron donor [45 U (mg protein)(-1)] in the presence of hydrogenase and either 2,3-dimethylnaphthoquinone (DMN) or cytochrome c in the enzyme assay The SR could not be separated from the hydrogenase during purification without loss of activity, whereas the hydrogenase could be separated from the SR The specific activity of the hydrogenase was 170 U (mg protein)(-1) with methyl viologen and 833 U (mg protein)(-1) with DMN as electron acceptors Both holoenzymes showed molecular masses of 250 kDa In SDS gels of active fractions, protein bands with apparent masses of 110 (SreA), 66 (HynL), 41 (HynS) and 29 kDa were present Enriched hydrogenase fractions contained 14 micro mol Fe and 2 micromol Ni (g protein)(-1); in addition, 25 micromol Mo (g protein)(-1) was found in the membrane fraction Two overlapping genomic cosmid clones were sequenced, encoding a five-gene SR cluster (sre) including the 110 kDa subunit gene (sreA), and a 12-gene hydrogenase cluster (hyn) including the large and small subunit genes and genes encoding proteins required for the maturation of NiFe hydrogenases A phylogenetic analysis of the SR amino acid sequence revealed that the protein belonged to the DMSO reductase family of molybdoenzymes and that the family showed a novel clustering A model of sulfur respiration in Acidianus developed from the biochemical results and the data of the amino acid sequence comparisons is discussed

122 citations


Journal ArticleDOI
TL;DR: Compared the protein pattern of the intracellular, extracellular, and surface protein fractions of an AHL‐deficient cepI mutant with the one of the parent strain H111 by means of two‐dimensional gel electrophoresis (2‐DE), it was shown that 55 proteins out of 985 detected spots were differentially expressed; these are expected to represent QS‐controlled gene products.
Abstract: Burkholderia cepacia H111, an important pathogen for persons suffering from cystic fibrosis, employs a quorum-sensing (QS) system, cep, to control expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are only expressed when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. In this study, we compared the protein pattern of the intracellular, extracellular, and surface protein fractions of an AHL-deficient cepI mutant with the one of the parent strain H111 by means of two-dimensional gel electrophoresis (2-DE). Our analysis showed that 55 proteins out of 985 detected spots were differentially expressed; these are expected to represent QS-controlled gene products. Addition of the respective signal molecules to the growth medium of the cep mutant fully restored the wild-type protein expression profile. In total about 5% of the B. cepacia proteome was downregulated and 1% upregulated in the cepI mutant, indicating that quorum sensing represents a global regulatory system. Nineteen proteins were identified with high confidence by N-terminal sequence analysis.

86 citations


Journal ArticleDOI
TL;DR: The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence, and visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources.
Abstract: The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.

83 citations


Journal ArticleDOI
TL;DR: The recombinant Lic16A protein was characterized as an endo-1,3(4)-beta-glucanase with a specific activity of 2680 and 340 U mg(-1) and a K(m) of 0.94 and 2.1 mg ml (-1) towards barley beta- glucan and laminarin, respectively.
Abstract: Clostridium thermocellum produces one major β-1,3-glucanase. Genomic DNA fragments containing the gene were cloned from two strains, DSM1237T (6848 bp) and F7 (9766 bp). Overlapping sequences were 99·9 % identical. The nucleotide sequences contained reading frames for a putative transposase, endo-β-1,3-1,4-glucanase CelC, a putative transcription regulator of the LacI type, β-1,3-glucanase Lic16A and a putative membrane protein. The licA genes of both strains encoded an identical protein of 1324 aa with a calculated molecular mass of 148 kDa. Lic16A is an unusually complex protein consisting of a leader peptide, a threefold repeat of an S-layer homologous module (SLH), an unknown module, a catalytic module of glycosyl hydrolase family 16 and a fourfold repeat of a carbohydrate-binding module of family CBM4a. The recombinant Lic16A protein was characterized as an endo-1,3(4)-β-glucanase with a specific activity of 2680 and 340 U mg−1 and a K m of 0·94 and 2·1 mg ml−1 towards barley β-glucan and laminarin, respectively. It was specific for β-glucans containing β-1,3-linkages with an optimum temperature of 70 °C at pH 6·0. The N-terminal SLH modules were cleaved from the protein as well in Escherichia coli as in C. thermocellum, but nevertheless bound tightly to the rest of the protein. Lic16A was located on the cell surface from which it could be purified after fractionated solubilization. Its inducible production allowed C. thermocellum to grow on β-1,3- or β-1,3-1,4-glucan.

66 citations


Journal ArticleDOI
TL;DR: The gene products PorBCglut and PorCCglut represent obviously other permeability pathways for the transport of hydrophilic compounds through the cell wall of C. glutamicum.
Abstract: Summary A cation-selective channel (porin), designated PorA, facilitates the passage of hydrophilic solutes across the cell wall of the mycolic acid-containing actinomycete Corynebacterium glutamicum. Biochemical and electrophysiological investigations of the cell wall of the mutant strain revealed the presence of an alternative channel-forming protein. This porin was purified to homogeneity and studied in lipid bilayer membranes. It forms small anion-selective channels with a diameter of about 1.4 nm and an average single-channel conductance of about 700 pS in 1 M KCl. The PorBCglut channel could be blocked by citrate in a dose-dependent manner. This result was in agreement with growth experiments in citrate as sole carbon source where growth in citrate was impaired as compared with growth in other carbon sources. The PorBCglut protein was partially sequenced and based on the resulting amino acid sequence of the corresponding gene, which was designated as porB, was identified as an unannotated 381 bp long open reading frame (ORF) in the published genome sequence of C. glutamicum ATCC13032. PorBCglut contains 126 amino acids with an N-terminal extension of 27 amino acids. One hundred and thirty-eight base pairs downstream of porB, we found an ORF that codes for a protein with about 30% identity to PorBCglut, which was named PorCCglut. The arrangement of porB and porC on the chromosome suggested that both genes belong to the same cluster. RT-PCR from overlapping regions between genes from wild-type C. glutamicum ATCC 13032 and its ATCC 13032ΔporA mutant demonstrated that this is the case and that porB and porC are cotranscribed. The gene products PorBCglut and PorCCglut represent obviously other permeability pathways for the transport of hydrophilic compounds through the cell wall of C. glutamicum.

53 citations


Journal ArticleDOI
TL;DR: It is concluded that free selenium is not involved in regulation but rather a successional compound such as selenocysteyl-tRNA or some selenoproteins, and the gene is indispensable for growth on formate because M. maripaludis possesses only a seLenocysteine-containing formate dehydrogenase.
Abstract: The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the selenoproteins, thus proving that the gene product is the archaeal translation factor (aSelB) specialized for selenocysteine insertion. The wild-type form of M. maripaludis repressed the synthesis of the S forms of selenoproteins, i.e., the selenium-independent alternative system, in selenium-enriched medium, but the mutant did not. We concluded that free selenium is not involved in regulation but rather a successional compound such as selenocysteyl-tRNA or some selenoprotein. Apart from the S forms, several enzymes from the general methanogenic route were affected by selenium supplementation of the wild type or by the selB mutation. Although the growth of M. maripaludis on H2/CO2 is only marginally affected by the selB lesion, the gene is indispensable for growth on formate because M. maripaludis possesses only a selenocysteine-containing formate dehydrogenase.

49 citations


Journal ArticleDOI
TL;DR: Conventional proteome analysis as well as PROTEOMEX could be successfully employed for the identification of markers which may allow the selection of patients prior to specific immunotherapy.
Abstract: Renal cell carcinoma (RCC) represents the most common malignant tumor in the kidney and is resistant to conventional therapies. The diagnosis of RCC is often delayed leading to progression and metastatic spread of the disease. Thus, validated markers for the early detection of the disease as well as selection of patients undergoing specific therapy is urgently needed. Using treatment with the monoclonal antibody (mAb) G250 as a model, proteome-based strategies were implemented for the identification of markers which may allow the discrimination between responders and nonresponders prior to application of G250-mediated immunotherapy. Flow cytometry revealed G250 surface expression in approximately 40% of RCC cell lines, but not in the normal kidney epithelium cell lines. G250 expression levels significantly varied thereby distinguishing between low, medium and high G250 expressing cell lines. Comparisons of two-dimensional gel electrophoresis expression profiles of untreated RCC cell lines versus RCC cell lines treated with a mAb directed against G250 and the characterization of differentially expressed proteins by mass spectrometry and/or Edman sequencing led to the identification of proteins such as chaperones, antigen processing components, transporters, metabolic enzymes, cytoskeletal proteins and unknown proteins. Moreover, some of these differentially expressed proteins matched with immunoreactive proteins previously identified by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, a technique called PROTEOMEX. Immunohistochemical analysis of a panel of surgically removed RCC lesions and corresponding normal kidney epithelium confirmed the heterogeneous expression pattern found by proteome-based technologies. In conclusion, conventional proteome analysis as well as PROTEOMEX could be successfully employed for the identification of markers which may allow the selection of patients prior to specific immunotherapy.

41 citations


Journal ArticleDOI
TL;DR: Functional studies showed that degraded SP-D had lost its calcium-dependent lectin properties, i.e. neither bound to mannose nor agglutinated bacteria, and proteases at concentrations observed in various lung diseases may impair the antimicrobial and immunomodulatory roles ofSP-D.

Journal ArticleDOI
TL;DR: A role of clustered M802 antigen/Thy-1 in reggie raft microdomains for cell growth and axon regeneration is suggested for fish Thy-1 and reggies interact.


Journal ArticleDOI
TL;DR: It might be that the cryoglobulin was produced by a single plasma B cell clone which passed immunological check-points in terms of B cell selection in the bone marrow in the absence of allelic exclusion, class switching and affinity maturation by somatic mutation.