Author
Gurdip Singh
Bio: Gurdip Singh is an academic researcher from Deen Dayal Upadhyay Gorakhpur University. The author has contributed to research in topic(s): Thermal decomposition & Essential oil. The author has an hindex of 36, co-authored 157 publication(s) receiving 5173 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In antimicrobial investigations, using inverted petriplate and food poison techniques, the leaf and bark volatile oils has been found to be highly effective against all the tested fungi except Aspergillus ochraceus, however, leaf oleoresin has shown inhibition only for Penicillium citrinum whereas bark olerosin has caused complete mycelial zone inhibition for As pergillus flavus and A. och raceus.
Abstract: The antioxidant, antifungal and antibacterial potentials of volatile oils and oleoresin of Cinnamomum zeylanicum Blume (leaf and bark) were investigated in the present study. The oleoresins have shown excellent activity for the inhibition of primary and secondary oxidation products in mustard oil added at the concentration of 0.02% which were evaluated using peroxide, thiobarbituric acid, p-anisidine and carbonyl values. Moreover, it was further supported by other complementary antioxidant assays such as ferric thiocyanate method in linoleic acid system, reducing power, chelating and scavenging effects on 1,1 0 -diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals. In antimicrobial investigations, using inverted petriplate and food poison techniques, the leaf and bark volatile oils has been found to be highly effective against all the tested fungi except Aspergillus ochraceus. However, leaf oleoresin has shown inhibition only for Penicillium citrinum whereas bark oleoresin has caused complete mycelial zone inhibition for Aspergillus flavus and A. ochraceus along with Aspergillus niger, Aspergillus terreus, P. citrinum and Penicillium viridicatum at 6 lL. Using agar well diffusion method, leaf volatile oil and oleoresin have shown better results in comparison with bark volatile oil, oleoresin and commercial bactericide, i.e., ampicillin. Gas chromatographic–mass spectroscopy studies on leaf volatile oil and oleoresin resulted in the identification of 19 and 25 components, which accounts for the 99.4% and 97.1%, respectively of the total amount and the major component was eugenol with 87.3% and 87.2%, respectively. The analysis of cinnamon bark volatile oil showed the presence of 13 components accounting for 100% of the total amount. (E)-cinnamaldehyde was found as the major component along with d-cadinene (0.9%), whereas its bark oleoresin showed the presence of 17 components accounting for 92.3% of the total amount. The major components were (E)-cinnamaldehyde (49.9%), along with several other components. � 2007 Elsevier Ltd. All rights reserved.
527 citations
[...]
TL;DR: Though, both essential oil and oleoresins were found to be effective, essential oil was finding to be better than the olerosins.
Abstract: The essential oil and oleoresins (ethanol, methanol, CCl(4) and isooctane) of Zingiber officinale were extracted respectively by hydrodistillation and Soxhlet methods and subjected to GC-MS analysis. Geranial (25.9%) was the major component in essential oil; eugenol (49.8%) in ethanol oleoresin, while in the other three oleoresins, zingerone was the major component (33.6%, 33.3% and 30.5% for, methanol, CCl(4) and isooctane oleoresins, respectively). The antioxidant activity of essential oil and oleoresins were evaluated against mustard oil by peroxide, anisidine, thiobarbituric acid (TBA), ferric thiocyanate (FTC) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging methods. They were found to be better antioxidants than butylated hydroxyanisole (BHA). The antimicrobial properties were also studied using various food-borne pathogenic fungal and bacterial species. The essential oil and CCl(4) oleoresin showed 100% zone inhibition against Fusarium moniliforme. For other tested fungi and bacteriae, the essential oil and all oleoresins showed good to moderate inhibitory effects. Though, both essential oil and oleoresins were found to be effective, essential oil was found to be better than the oleoresins.
322 citations
[...]
TL;DR: The essential oils extracted from the seeds of seven spices, Anethum graveolens, Carum capticum, Coriandrum sativum, Cuminum cyminum, Foeniculum vulgare, Pimpinella anisum and Seseli indicum have been studied for antibacterial activity against eight pathogenic bacteria, causing infections in the human body.
Abstract: The essential oils extracted from the seeds of seven spices, Anethum graveolens, Carum capticum, Coriandrum sativum, Cuminum cyminum, Foeniculum vulgare, Pimpinella anisum and Seseli indicum have been studied for antibacterial activity against eight pathogenic bacteria, causing infections in the human body. It has been found that the oil of C. capticum is very effective against all tested bacteria. The oil of C. cyminum and A. graveolens also gave similar results. These oils are equally or more effective when compared with standard antibiotics, at a very low concentration.
312 citations
[...]
TL;DR: In this paper, a GC and GC-MS analysis of Foeniculum vulgare volatile oil showed the presence of 35 components containing 96.4% of the total amount, the major component was trans-anethole (70.1%).
Abstract: GC and GC–MS analysis of Foeniculum vulgare volatile oil showed the presence of 35 components containing 96.4% of the total amount. The major component was trans -anethole (70.1%). The analysis of its acetone extract showed the presence of nine components accounting for 68.9% of the total amount. Linoleic acid (54.9%), palmitic acid (5.4%) and oleic acid (5.4%) were found as major components in extract. The antifungal and antioxidative potentials were also carried out by different techniques. In inverted petriplate method, the volatile oil showed complete zone inhibition against Aspergillus niger , Aspergillus flavus , Fusarium graminearum and Fusarium moniliforme at 6 μL dose. It was found to be effective for A. niger even at 4 μL dose. Moreover, using food poison technique, the volatile oil and extract both showed good to moderate zone of inhibition. The antioxidant value was evaluated by measuring peroxide and thiobarbituric acid values for linseed oil at fixed time intervals. Both, the volatile oil and extract showed strong antioxidant activity in comparison with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). In addition, their inhibitory action in linoleic acid system was studied by monitoring peroxide accumulation in emulsion during incubation through ferric thiocyanate method. The results were well correlated with the above results.
187 citations
[...]
TL;DR: In this paper, green synthesized copper oxide (CuO) nanoparticles (NPs) were employed as electrocatalytic materials for the fabrication of counter electrode in dye sensitized solar cells (DSSCs).
Abstract: Green synthesized copper oxide (CuO) nanoparticles (NPs) were employed as electrocatalytic materials for the fabrication of counter electrode in dye sensitized solar cells (DSSCs). Uniform CuO NPs were synthesized by the leaves extract of Calotropis gigantea plant in aqueous medium through green synthesis. The synthesized CuO NPs were extensively characterized in terms of morphology, crystalline nature, structural, electrochemical and photovoltaic properties using various experimental tools. The synthesized CuO NPs possessed a well crystalline nature which was perfectly matched to monoclinic structure of bulk CuO. For DSSC application, a thin film of synthesized CuO NPs was prepared by the paste of CuO NPs and coated onto FTO glass using glass rod. The cyclovoltametry measurement revealed that CuO NPs based thin film showed reasonably good surface for the reduction of triiodide ions in redox electrolyte, suggesting its good electrocatalytic activity toward the iodide ions. Moderately high solar to electrical energy conversion efficiency of ∼3.4% along with high short circuit current density (JSC) of ∼8.13 mA/cm2, open circuit voltage (VOC) of ∼0.676 V and fill factor (FF) of 0.62 was recorded in the DSSC fabricated with synthesized CuO NPs based counter electrode.
181 citations
Cited by
More filters
[...]
TL;DR: Findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.
Abstract: Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, medicinal and cosmetic applications, especially nowadays in pharmaceutical, sanitary, cosmetic, agricultural and food industries. Because of the mode of extraction, mostly by distillation from aromatic plants, they contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components. In vitro physicochemical assays characterise most of them as antioxidants. However, recent work shows that in eukaryotic cells, essential oils can act as prooxidants affecting inner cell membranes and organelles such as mitochondria. Depending on type and concentration, they exhibit cytotoxic effects on living cells but are usually non-genotoxic. In some cases, changes in intracellular redox potential and mitochondrial dysfunction induced by essential oils can be associated with their capacity to exert antigenotoxic effects. These findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.
5,297 citations
[...]
TL;DR: A review of phenolic and polyphenolic compounds can be found in this article, which summarizes both the synthetic and natural phenolic antioxidants, emphasizing their mode of action, health effects, degradation products and toxicology.
Abstract: This review reports on the latest research results and applications of phenolic and polyphenolic compounds. Phenolic compounds, ubiquitous in plants, are an essential part of the human diet and are of considerable interest due to their antioxidant properties and potential beneficial health effects. These compounds range structurally from a simple phenolic molecule to complex high-molecular-weight polymers. There is increasing evidence that consumption of a variety of phenolic compounds present in foods may lower the risk of health disorders because of their antioxidant activity. When added to foods, antioxidants control rancidity development, retard the formation of toxic oxidation products, maintain nutritional quality, and extend the shelf-life of products. Due to safety concerns and limitation on the use of synthetic antioxidants, natural antioxidants obtained from edible materials, edible by-products and residual sources have been of increasing interest. This contribution summarizes both the synthetic and natural phenolic antioxidants, emphasizing their mode of action, health effects, degradation products and toxicology. In addition, sources of phenolic antioxidants are discussed in detail.
1,317 citations
[...]
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...
1,277 citations
[...]
TL;DR: This study provides direct comparative data on antioxidant capacity and total and individual phenolics contents of the 26 spice extracts and showed that phenolic compounds in the tested spices contributed significantly to their antioxidant capacity.
Abstract: Total equivalent antioxidant capacity (TEAC) and phenolic content of 26 common spice extracts from 12 botanical families were investigated. Qualitative and quantitative analyses of major phenolics in the spice extracts were systematically conducted by reversed-phase high-performance liquid chromatography (RP-HPLC). Many spices contained high levels of phenolics and demonstrated high antioxidant capacity. Wide variation in TEAC values (0.55−168.7 mmol/100 g) and total phenolic content (0.04−14.38 g of gallic acid equivalent/100 g) was observed. A highly positive linear relationship (R2 = 0.95) obtained between TEAC values and total phenolic content showed that phenolic compounds in the tested spices contributed significantly to their antioxidant capacity. Major types of phenolic constituents identified in the spice extracts were phenolic acids, phenolic diterpenes, flavonoids, and volatile oils (e.g., aromatic compounds). Rosmarinic acid was the dominant phenolic compound in the six spices of the family La...
1,191 citations
[...]
TL;DR: An overview of natural antioxidants, their mechanisms of action, and potential applications can be found in this article, where the authors provide an overview of the potential applications of these natural antioxidants.
Abstract: While use of synthetic antioxidants (such as butylated hydroxytoluene and butylated hydroxyanisole) to maintain the quality of ready-to-eat food products has become commonplace, consumer concern regarding their safety has motivated the food industry to seek natural alternatives. Phenolic antioxidants can inhibit free radical formation and/or interrupt propagation of autoxidation. Fat-soluble vitamin E (α-tocopherol) and water-soluble vitamin C (L-ascorbic acid) are both effective in the appropriate matrix. Plant extracts, generally used for their flavoring characteristics, often have strong H-donating activity thus making them extremely effective antioxidants. This antioxidant activity is most often due to phenolic acids (gallic, protocatechuic, caffeic, and rosmarinic acids), phenolic diterpenes (carnosol, carnosic acid, rosmanol, and rosmadial), flavonoids (quercetin, catechin, naringenin, and kaempferol), and volatile oils (eugenol, carvacrol, thymol, and menthol). Some plant pigments (anthocyanin and anthocyanidin) can chelate metals and donate H to oxygen radicals thus slowing oxidation via 2 mechanisms. Tea and extracts of grape seeds and skins contain catechins, epicatechins, phenolic acids, proanthocyanidins, and resveratrol, all of which contribute to their antioxidative activity. The objective of this article is to provide an overview of natural antioxidants, their mechanisms of action, and potential applications.
1,128 citations