scispace - formally typeset
Search or ask a question

Showing papers by "James Arthos published in 2017"


Journal ArticleDOI
TL;DR: The results demonstrate that early, deep, and frequent sampling is needed to investigate viral/host interaction during AHI, which could help identify prerequisites for prevention and cure of HIV-1 infection.
Abstract: In order to inform the rational design of HIV-1 preventive and cure interventions it is critical to understand the events occurring during acute HIV-1 infection (AHI). Using viral deep sequencing on six participants from the early capture acute infection RV217 cohort, we have studied HIV-1 evolution in plasma collected twice weekly during the first weeks following the advent of viremia. The analysis of infections established by multiple transmitted/founder (T/F) viruses revealed novel viral profiles that included: a) the low-level persistence of minor T/F variants, b) the rapid replacement of the major T/F by a minor T/F, and c) an initial expansion of the minor T/F followed by a quick collapse of the same minor T/F to low frequency. In most participants, cytotoxic T-lymphocyte (CTL) escape was first detected at the end of peak viremia downslope, proceeded at higher rates than previously measured in HIV-1 infection, and usually occurred through the exploration of multiple mutational pathways within an epitope. The rapid emergence of CTL escape variants suggests a strong and early CTL response. Minor T/F viral strains can contribute to rapid and varied profiles of HIV-1 quasispecies evolution during AHI. Overall, our results demonstrate that early, deep, and frequent sampling is needed to investigate viral/host interaction during AHI, which could help identify prerequisites for prevention and cure of HIV-1 infection.

52 citations


Journal ArticleDOI
TL;DR: In vivo treatment with an antibody to the gut-homing integrin α4β7 was shown to reduce viral transmission, delay disease progression, and induce persistent virus control in macaques challenged with simian immunodeficiency virus (SIV).
Abstract: The intestinal mucosa is a key anatomical site for HIV-1 replication and CD4+ T cell depletion. Accordingly, in vivo treatment with an antibody to the gut-homing integrin α4β7 was shown to reduce viral transmission, delay disease progression, and induce persistent virus control in macaques challenged with simian immunodeficiency virus (SIV). We show that integrin α4β7 is efficiently incorporated into the envelope of HIV-1 virions. Incorporated α4β7 is functionally active as it binds mucosal addressin cell adhesion molecule-1 (MAdCAM-1), promoting HIV-1 capture by and infection of MAdCAM-expressing cells, which in turn mediate trans-infection of bystander cells. Functional α4β7 is present in circulating virions from HIV-infected patients and SIV-infected macaques, with peak levels during the early stages of infection. In vivo homing experiments documented selective and specific uptake of α4β7+ HIV-1 virions by high endothelial venules in the intestinal mucosa. These results extend the paradigm of tissue homing to a retrovirus and are relevant for the pathogenesis, treatment, and prevention of HIV-1 infection.

51 citations


Journal ArticleDOI
TL;DR: A new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation andBioinformatics analysis supports the design of a 4-valent or 5-valents formulation using gp120 Immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes.
Abstract: Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes.

8 citations


Journal ArticleDOI
TL;DR: It is shown that Chinese hamster ovary cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120, which suggests that the extrackllular matrix may be an important mediator of HIV-1 interaction with α4β7-expressing cells.
Abstract: Gut-homing α4β7high CD4+ T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through α4β7 and that this likely contributes to the infection of α4β7high T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4β7 binding. However, lack of α4β7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4β7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4β7 interactions. We show that Chinese hamster ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120. CHO cell fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4β7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4β7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion-exchange chromatography abrogated V2-independent gp120-α4β7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4β7 interactions similarly to CHO cell fibronectin. These findings provide an explanation for the apparently contradictory observations regarding the gp120-α4β7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV-1, and this plays an important role in the development of AIDS. Integrin α4β7 plays a major role in the trafficking of lymphocytes, including CD4+ T cells, into gut lymphoid tissues. Previous reports indicate that some HIV-1 gp120 envelope proteins bind to and signal through α4β7, which may help explain the preferential infection of gut CD4+ T cells. In this study, we demonstrate that extracellular matrix proteins can mediate interactions between gp120 and α4β7 This suggests that the extracellular matrix may be an important mediator of HIV-1 interaction with α4β7-expressing cells. These findings provide new insight into the nature of HIV-1-α4β7 interactions and how these interactions may represent targets for therapeutic intervention.

8 citations


Journal ArticleDOI
TL;DR: An improved immunization strategy based on an innovative selection process is designed and applied to isolate new lymphocyte–specific monoclonal antibodies that are able to prevent their migration into inflamed gut tissues and/or to counteract HIV infection in vitro.
Abstract: The homing of lymphocytes to the mucosa is mainly controlled by α4β7 integrin, and it is amplified during gut chronic inflammation, as occurs with HIV and/or inflammatory bowel diseases. We designed and applied an improved immunization strategy based on an innovative selection process to isolate new α4β7 lymphocyte-specific monoclonal antibodies that are able to prevent their migration into inflamed gut tissues and/or to counteract HIV infection in vitro. First, 5 monoclonal antibodies (1 IgA, 1 IgM, and 4 IgGs) were selected based on their capacity to recognize α4 or β7 homodimers and α4β7 heterodimers in transfected human cells. Their ability to block gp120/α4β7 or MAdCAM-1/α4β7 interactions was then measured in vitro with human T and B lymphocytes. In vitro, the anti-α4β7 IgA isotype was found to have the highest affinity for the α4β7 heterodimer, and it significantly reduced HIV replication in retinoic acid-treated α4β7 CD4 human T cells. This α4β7-specific IgA also displayed a high avidity for human and mouse α4β7 lymphocytes in both mouse and human inflammatory colitis tissues. These new antibodies, and in particular those with mucosa-targeting isotypes such as IgA, could therefore be potential novel therapeutic tools for treating HIV and inflammatory bowel disease.

4 citations