scispace - formally typeset
Search or ask a question

Showing papers by "Janneke Balk published in 2019"


Journal ArticleDOI
TL;DR: Recent progress in iron biofortification using conventional plant breeding or transgenics is summarized and some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies.
Abstract: Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.

98 citations


Journal ArticleDOI
TL;DR: The function of 2 partially redundant E3 ubiquitin ligases in Arabidopsis thaliana are described and evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation is provided.
Abstract: Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake.

73 citations


Journal ArticleDOI
TL;DR: In this article, the authors used transgenic strategies to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a sink for minerals.
Abstract: Wheat is the staple food crop in temperate countries and increasingly consumed in developing countries, displacing traditional foods. However, wheat products are typically low in bioavailable iron and zinc, contributing to deficiencies in these micronutrients in countries where wheat is consumed as a staple food. Two factors contribute to the low contents of bioavailable iron and zinc in wheat: the low concentrations of these minerals in white flour, which is most widely consumed, and the presence of phytates in mineral-rich bran fractions. Although high zinc types of wheat have been developed by conventional plant breeding (biofortification), this approach has failed for iron. However, studies in wheat and other cereals have shown that transgenic (also known as genetically modified; GM) strategies can be used to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a 'sink' for minerals. Although such strategies currently have low acceptability, greater understanding of the mechanisms which control the transport and deposition of iron and zinc in the developing grain should allow similar effects to be achieved by exploiting naturally induced genetic variation. When combined with conventional biofortification and innovative processing, this approach should provide increased mineral bioavailability in a range of wheat products, from white flour to wholemeal.

62 citations


Journal ArticleDOI
TL;DR: Current knowledge regarding the nutritional content of pea and faba bean, two major UK pulse crops, are reviewed, and the potential for their genetic improvement is discussed.
Abstract: Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement.

55 citations


Journal ArticleDOI
TL;DR: A mechanistic model is proposed to help focus future research questions towards a full understanding of the regulatory role of these proteins in Fe homeostasis in plants.
Abstract: Iron (Fe) is an essential nutrient for plants, but at the same time its redox properties can make it a dangerous toxin inside living cells. Homeostasis between uptake, use and storage of Fe must be maintained at all times. A small family of unique hemerythrin E3 ubiquitin ligases found in green algae and plants play an important role in avoiding toxic Fe overload, acting as negative regulators of Fe homeostasis. Protein interaction data showed that they target specific transcription factors for degradation by the 26S proteasome. It is thought that the activity of the E3 ubiquitin ligases is controlled by Fe binding to the N-terminal hemerythrin motifs. Here we discuss what we have learned so far from studies on the HRZ (Hemerythrin RING Zinc finger) proteins in rice, the homologous BTS (BRUTUS) and root-specific BTSL (BRUTUS-LIKE) in Arabidopsis. A mechanistic model is proposed to help focus future research questions towards a full understanding of the regulatory role of these proteins in Fe homeostasis in plants.

47 citations


Journal ArticleDOI
TL;DR: The data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastIDS, and a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Abstract: A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.

42 citations


Posted ContentDOI
16 Apr 2019-bioRxiv
TL;DR: The data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastIDS, and a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Abstract: Summary A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ABC transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.

12 citations


Posted ContentDOI
02 Jul 2019-bioRxiv
TL;DR: Data indicate that VTL-type transporters are the main route for delivering iron to symbiotic rhizobia in Medicago truncatula.
Abstract: Summary The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron. The host plant is known to provide iron to developing bacteroids, but questions remain regarding which transporters are involved. Here, we characterize two Vacuolar Iron Transporter-Like (VTL) proteins in Medicago truncatula that are specifically expressed during nodule development. VTL4 is mostly expressed during early infection and the protein was localized to membranes and the infection thread. vtl4 mutants were delayed in nodule development. VTL8 is closely related to SEN1 in Lotus japonicus and expressed in the late stages of bacteroid differentiation. The VTL8 protein was localized to the symbiosome membrane. A mutant line lacking the tandemly-arranged VTL4 – VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a slight decrease in luminescence was observed in vtl4 mutants and a strong decrease in the 13U mutant. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. Taken together, these data indicate that VTL-type transporters are the main route for delivering iron to symbiotic rhizobia.

1 citations