scispace - formally typeset
Search or ask a question

Showing papers by "Jian Ni published in 2019"


Journal ArticleDOI
TL;DR: This study quantitatively estimate the mortality, morbidity, and analyze the trends of 29 cancer groups in 195 countries/regions between 1990 and 2017 to provide basis for future investigations to the common etiological factors, leading to the occurrence of different cancers.
Abstract: Cancer has become the second most serious disease threatening human health, followed by cardiovascular diseases. This study aimed to quantitatively estimate the mortality, morbidity, and analyze the trends of 29 cancer groups in 195 countries/regions between 1990 and 2017. Detailed information of 29 cancer groups were collected from the Global Burden of Disease (GBD) study in 2017 and age-standardized incidence rates (ASIR) and age-standardized death rates (ASDR) of 29 cancer groups were calculated based on gender, age, region, and country. Trend analyses were conducted for major cancer types. In 2017, the global death population caused by cancer reached 9 million, which was nearly twice the number in 1990. The ASDR and ASIR of cancer in males were about 1.5 times those of females. Breast cancer showed the highest mortality rate in females in 2017. Individuals aged over 50 are at high risk of developing cancer and the number of cases and deaths in this age group accounted for more than 80% of all cancers in all age groups. Asia has the heaviest cancer burden due to its large population density. Different cancers in varied countries globally have their own characteristics. The ASDR and ASIR of some major cancers demonstrated changes from 1990 to 2017. Analyses of these data provided basis for future investigations to the common etiological factors, leading to the occurrence of different cancers, the development of prevention strategies based on local characteristics, socioeconomic and other conditions, and the formulation of more targeted interventions.

116 citations


Journal ArticleDOI
TL;DR: A MIL series metal‒organic framework (MOF), MIL-100(Fe), was successfully synthesized at the nanoscale and fully characterized by TEM, TGA, XRD, FTIR, DLS, and BET.
Abstract: A MIL series metal‒organic framework (MOF), MIL-100(Fe), was successfully synthesized at the nanoscale and fully characterized by TEM, TGA, XRD, FTIR, DLS, and BET. A toxicological assessment was performed using two different cell lines: human normal liver cells (HL-7702) and hepatocellular carcinoma (HepG2). In vitro cytotoxicity of MIL-100(Fe) was evaluated by the MTT assay, LDH releasing rate assay, DAPI staining, and annexin V/PI double staining assay. The safe dose of MIL-100(Fe) was 80 μg/mL. It exhibited good biocompatibility, low cytotoxicity, and high cell survival rate (HL-7702 cells' viability >85.97%, HepG2 cells' viability >91.20%). Therefore, MIL-100(Fe) has a potential application as a drug carrier.

58 citations


Journal ArticleDOI
TL;DR: Results showed that nano-MOF-5 prepared by the direct addition method had complete structure, uniform size and good biocompatibility, and was suitable as an ORI carrier, and is hopeful to become a new anticancer sustained release preparation.
Abstract: Oridonin (ORI) is a natural active ingredient with strong anticancer activity. But its clinical use is restricted due to its poor water solubility, short half-life, and low bioavailability. The aim of this study is to utilize the metal organic framework material MOF-5 to load ORI in order to improve its release characteristics and bioavailability. Herein, MOF-5 was synthesized by the solvothermal method and direct addition method, and characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetric Analysis (TG), Brunauer–Emmett–Teller (BET), and Dynamic Light Scattering (DLS), respectively. MOF-5 prepared by the optimal synthesis method was selected for drug-loading and in vitro release experiments. HepG2 cells were model cells. MTT assay, 4′,6-diamidino-2-phenylindole (DAPI) staining and Annexin V/PI assay were used to detect the biological safety of blank carriers and the anticancer activity of drug-loaded materials. The results showed that nano-MOF-5 prepared by the direct addition method had complete structure, uniform size and good biocompatibility, and was suitable as an ORI carrier. The drug loading of ORI@MOF-5 was 52.86% ± 0.59%. The sustained release effect was reliable, and the cumulative release rate was about 87% in 60 h. ORI@MOF-5 had significant cytotoxicity (IC50:22.99 μg/mL) and apoptosis effect on HepG2 cells. ORI@MOF-5 is hopeful to become a new anticancer sustained release preparation. MOF-5 has significant potential as a drug carrier material.

47 citations


Journal ArticleDOI
20 Mar 2019-Cells
TL;DR: Analysis of differentially expressed proteins revealed that emodin mainly affects oxidative phosphorylation pathways by inhibiting the function of the mitochondrial respiratory chain complexes, which results in mitochondrial damage and hepatocyte apoptosis in vitro.
Abstract: Emodin is the main component of traditional Chinese medicines including rhubarb, Polygonum multiflorum, and Polygonum cuspidatum. It has confirmed hepatotoxicity and may be the main causative agent of liver damage associated with the above-mentioned traditional Chinese medicines. However, current research does not explain the mechanism of emodin in hepatotoxicity. In this study, L02 cells were used as a model to study the mechanism of emodin-induced hepatocyte apoptosis using quantitative proteomics, and the results were verified by Western blot. A total of 662 differentially expressed proteins were discovered and analyzed using Gene Ontology (GO) and pathway enrichment analysis. The results show that the oxidative phosphorylation pathway is highly represented. Abnormalities in this pathway result in impaired mitochondrial function and represent mitochondrial damage. This result is consistent with mitochondria membrane potential measurements. Analysis of differentially expressed proteins revealed that emodin mainly affects oxidative phosphorylation pathways by inhibiting the function of the mitochondrial respiratory chain complexes; the mitochondrial respiratory chain complex activity assay result also confirmed that emodin could inhibit the activity of all mitochondrial complexes. This results in an increase in caspase-3, a decrease in mitochondrial membrane potential (MMP,) an increase in reactive oxygen species (ROS), and disorders in ATP synthesis, etc., eventually leading to mitochondrial damage and hepatocyte apoptosis in vitro.

38 citations


Journal ArticleDOI
TL;DR: The results show that the hepatotoxic effect of matrine is exerted via inhibition of Nrf2 pathway, activation of ROS-mediated mitochondrial apoptosis pathway, and cell cycle arrest at S phase.
Abstract: Matrine, an alkaloid isolated from Sophora flavescens, possesses a wide range of pharmacological properties. However, the use of matrine in clinical practice is limited due to its toxic effects. The present study investigated the roles of mitochondria and reactive oxygen species (ROS) in matrine-induced liver injury. Our results showed that treatment of HL-7702 cells with matrine led to significant and concentration- and time-dependent reductions in their viability, as well as significant and concentration-dependent increases in the number of apoptotic cells and supernatant lactate dehydrogenase (LDH) activity. The treatment led to significant increases in the population of cells in S phase and significant reduction of cell proportion in G0/G1 and G2/M phases. It also significantly and concentration-dependently increased the levels of ROS and malondialdehyde (MDA) but significantly and concentration-dependently reduced superoxide dismutase (SOD) activity, level of reduced glutathione (GSH), and mitochondrial membrane potential (MMP). Matrine treatment significantly and concentration-dependently upregulated the expressions of Bax, p53, p-p53, p21, cyclin E, Fas, cleaved caspase-3, caspase-8, and caspase-9 proteins and downregulated the expressions of Bcl-2, cyclin-dependent kinase 2 (CDK2), and cyclin A. It also significantly promoted the cleavage of poly(ADP-ribose)polymerase (PARP), upregulated Kelch-like ECH-associated protein 1 (Keap1) expression, and downregulated the expressions of cellular total and nuclear Nrf2. Matrine significantly inhibited the expressions of downstream oxidoreductases (Heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductases 1 (NQO-1)) and enhanced the formation of Keap1/Nrf2 protein complex. These results show that the hepatotoxic effect of matrine is exerted via inhibition of Nrf2 pathway, activation of ROS-mediated mitochondrial apoptosis pathway, and cell cycle arrest at S phase. Pretreatment with N-acetyl cysteine (NAC) partially reversed matrine-induced hepatotoxicity.

37 citations


Journal ArticleDOI
TL;DR: Assessment of the yield, monosaccharide composition, molecular weight, and conformation of L. barbarum polysaccharides collected from different regions of China suggested that the L. Barbarum produced in Ningxia and Xinjiang maybe more suitable as materials for medicines and functional foods.
Abstract: Lycium barbarum (wolfberry) has been widely cultivated in China, particularly in northwest regions. However, the fruit size and taste of L. barbarum from different habitats are quite different. Traditionally, only the fruit of L. barbarum produced in Ningxia province is recorded as an authentic herb, although the detailed mechanism responsible for this remains obscure. Polysaccharides are considered major active ingredients in L. barbarum which is crucial for its quality evaluation. In this study, we assessed the yield, monosaccharide composition, molecular weight, and conformation of L. barbarum polysaccharides (LBPs) collected from different regions of China. The antioxidant and immune activities of LBPs were also determined as its quality indicator. Our results showed that the similarity values of monosaccharide composition were larger than 0.926, and the Mw of the two fractions (peaks 1–2) in LBPs were ranging from 1.36 × 106 to 2.01 × 106 (peak 1), and 6.85 × 104 to 10.30 × 104 (peak 2) which indicated that the structure of LBPs were similar. In addition, results showed that there was no significant difference in antioxidant and immune activities of nine LBPs from different regions. However, the yield of LBPs from Qinghai Province (low atmospheric temperature, high altitude) was significantly lower (p < 0.05) than those collected from Xinjiang and Ningxia province. These data suggested that the L. barbarum produced in Ningxia and Xinjiang maybe more suitable as materials for medicines and functional foods. This study also provides a reference for improving the quality control standard of LBPs.

30 citations


Journal ArticleDOI
TL;DR: It is hypothesized that most THMs treat diseases via three mechanisms: metabolizing into active metabolites by the action of gut microbiota, regulation of Gut microbiota balance, and regulating the fermentation products of the gut microbes.
Abstract: Traditional Herbal Medicine (THM) has been used for thousands of years, and is popular worldwide due to its effectiveness in a variety of diseases. THM has also formed the basis of the discovery of modern drugs like artemisinin and paclitaxel. However, at present, studies that focus on development in the field of THM are stagnant because currently, the effective ingredients in the herbal formulations and the ambiguity of the underlying mechanisms of action are unknown. In this review, we have investigated the studies available that focused on the efficacy, active ingredients and bioavailability of THM, and the function of gut microbiota in THM-mediated treatment of disease. We hypothesized that most THMs treat diseases via three mechanisms: (1) metabolizing into active metabolites by the action of gut microbiota, (2) regulation of gut microbiota balance, and (3) regulating the fermentation products of the gut microbes. Therefore, focusing on these aspects can help elucidate the pharmacodynamic constituents of THM preparations, and their therapeutic mechanisms of action.

26 citations


Journal ArticleDOI
TL;DR: The ex vivo penetration study revealed that Cur-MMs could penetrate the rabbit cornea more efficiently than the free curcumin and biocompatible Cur-MM-ISG has great potential in ophthalmic drug therapy.
Abstract: Curcumin (Cur) is a naturally hydrophobic polyphenol with potential pharmacological properties. However, the poor aqueous solubility and low bioavailability of curcumin limits its ocular administration. Thus, the aim of this study was to prepare a mixed micelle in situ gelling system of curcumin (Cur-MM-ISG) for ophthalmic drug delivery. The curcumin mixed micelles (Cur-MMs) were prepared via the solvent evaporation method, after which they were incorporated into gellan gum gels. Characterization tests showed that Cur-MMs were small in size and spherical in shape, with a low critical micelle concentration. Compared with free curcumin, Cur-MMs improved the solubility and stability of curcumin significantly. The ex vivo penetration study revealed that Cur-MMs could penetrate the rabbit cornea more efficiently than the free curcumin. After dispersing the micelles in the gellan gum solution at a ratio of 1:1 (v/v), a transparent Cur-MM-ISG with the characteristics of a pseudoplastic fluid was formed. No obvious irritations were observed in the rabbit eyes after ocular instillation of Cur-MM-ISG. Moreover, Cur-MM-ISG showed a longer retention time on the corneal surface when compared to Cur-MMs using the fluorescein sodium labeling method. These findings indicate that biocompatible Cur-MM-ISG has great potential in ophthalmic drug therapy.

25 citations


Journal ArticleDOI
09 Jul 2019-Cells
TL;DR: The hepatocellular toxicity of saponins in Rhizoma paridis should be considered during the clinical application of this drug, and these results indicate that PSI induced apoptosis in HepaRG cells through activation of ROS and death receptor pathways.
Abstract: Rhizoma paridis is a popularly-used Chinese medicine in clinics, based on the pharmacodynamic properties of its saponin components The four main saponins in Rhizoma paridis are designated saponins I, II, VI, and VII At present, much attention is focused on the anticancer effect of Rhizoma paridis which is manifested in its cytotoxicity to various cancer cells The purpose of this study was to investigate the hepatocellular toxicities of the four saponins in Rhizoma paridis and the relative intensities of their cytotoxic effects It was found that the four saponins were cytotoxic to two types of hepatocytes-HL-7702 and HepaRG cells The cytotoxicities of the four saponins to the two cell models were compared One of the most cytotoxic saponins was Rhizoma paridis saponin I (PSI) This was used to determine the mechanism of hepatocellular toxicity Results from MTT assays demonstrated that the four saponins induced apoptosis of the two hepatocyte models in a dose-dependent and time-dependent manner In addition, fluorescent 4′,6-diamidino-2-phenylindole (DAPI) staining was used to observe the morphological changes of HepaRG cells after saponin administration Further, as the concentration increased, PSI-induced lactate dehydrogenase (LDH) release from HepaRG cells increased gradually In addition, PSI enhanced the levels of reactive oxygen species (ROS) and blocked the S and G2 phases of the cell cycle in HepaRG cells A western blot indicated that PSI upregulated the protein expression levels of p53, p21, and Fas Furthermore, the PSI-induced changes in the p53 protein increased the Bax/bcl-2 ratio, resulting in enhancement of the release of mitochondrial cytochrome c, activation of caspases-3, -8, and -9, poly-ADP ribose polymerase (PARP), and ultimately apoptosis Increased Fas protein activated caspase-8, which led to the activation of caspase-3 and its downstream PARP protein, resulting in cell apoptosis These results indicate that PSI induced apoptosis in HepaRG cells through activation of ROS and death receptor pathways The results obtained in this study suggest that the hepatocellular toxicity of saponins in Rhizoma paridis should be considered during the clinical application of this drug In addition, they provide a reference for future anti-cancer studies on Rhizoma paridis

17 citations


Journal ArticleDOI
TL;DR: The results in this study proved that the polyphyllin II has hepatotoxicity in vitro through caspases activation and cell‐cycle arrest and gave a wake‐up call for the clinical application of Rhizoma Paridis.
Abstract: Rhizoma Paridis, a traditional Chinese medicine, has shown promise in cancer prevention and therapy. Polyphyllin II is one of the most significant saponins in Rhizoma Paridis and it has toxic effects on kinds of cancer cells. However, our results in this study proved that the polyphyllin II has hepatotoxicity in vitro through caspases activation and cell-cycle arrest. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide results indicated polyphyllin II inhibited proliferation, induced apoptosis in HepaRG cells and HL-7702 cells and showed a concentration and time-dependent. Then, we selected the innovative cell model-HepaRG cells to explore the mechanism of hepatotoxicity. Our data showed the reactive oxygen species (ROS) increased and the mitochondrial membrane potential decreased in HepaRG cells after administration of polyphyllin II. Besides, with the increase of concentration, the release of lactate dehydrogenase increased and the S phase of the cell cycle was arrested. Nevertheless, when pretreatment with antioxidant N-acetylcysteine, apoptotic cells decreased significantly, inhibited the production of ROS and improved the decrease of membrane potential in HepaRG cells. Moreover, polyphyllin II treatment increased levels of Fas, Bax, cytochrome c, activated caspase-3, -8, -9, cleaved poly(ADP-ribose) polymerase and decreased Bcl-2 expression levels. Finally, we identified two signal pathways of apoptosis induced by polyphyllin II including the death receptor pathway and the mitochondria pathway. This study confirmed the hepatotoxicity of the polyphyllin II in vitro, which has never been discovered and gave a wake-up call for the clinical application of Rhizoma Paridis.

15 citations


Journal ArticleDOI
TL;DR: The results show that C8G can lead to abnormal oxidative phosphorylation by inhibiting the function of mitochondrial complexes, resulting in decreased mitochondrial membrane potential (MMP), increased reactive oxygen species (ROS), and eventually resulting in mitochondrial damage and apoptosis.