scispace - formally typeset
Search or ask a question

Showing papers by "Kelvin J. Richards published in 2014"


Journal ArticleDOI
TL;DR: A review of recent advancements and current knowledge gaps and important emerging research directions can be found in this article, with a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea.
Abstract: The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Nino-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.

126 citations


Journal ArticleDOI
TL;DR: A drifting robotic gene sensor is used to obtain high-resolution data on the distributions and abundances of N2-fixing populations over small spatiotemporal scales and uncovered a striking and previously unrecognized correlation between phosphate, which is undergoing long-term change in the region, and N2 -fixing cyanobacterial abundances.
Abstract: Nitrogen-fixing microorganisms (diazotrophs) are keystone species that reduce atmospheric dinitrogen (N2) gas to fixed nitrogen (N), thereby accounting for much of N-based new production annually in the oligotrophic North Pacific. However, current approaches to study N2 fixation provide relatively limited spatiotemporal sampling resolution; hence, little is known about the ecological controls on these microorganisms or the scales over which they change. In the present study, we used a drifting robotic gene sensor to obtain high-resolution data on the distributions and abundances of N2-fixing populations over small spatiotemporal scales. The resulting measurements demonstrate that concentrations of N2 fixers can be highly variable, changing in abundance by nearly three orders of magnitude in less than 2 days and 30 km. Concurrent shipboard measurements and long-term time-series sampling uncovered a striking and previously unrecognized correlation between phosphate, which is undergoing long-term change in the region, and N2-fixing cyanobacterial abundances. These results underscore the value of high-resolution sampling and its applications for modeling the effects of global change.

65 citations


Journal ArticleDOI
TL;DR: In this article, the impact of the bias and the interannual variability of the EASST on the tropical Pacific in a coupled general circulation model was investigated by comparing a run in a fully coupled mode (CTL run) and a run that is nudged toward the climatological monthly mean of the SST in the CTL run, but full air-sea coupling is allowed elsewhere.
Abstract: Many coupled general circulation models (CGCMs) suffer from serious model bias in the zonal gradient of sea surface temperature (SST) in the equatorial Atlantic. The bias of the equatorial Atlantic SST (EASST) may affect the interannual variability of the equatorial Atlantic, which in turn may influence the state of the tropical Pacific. In this paper we investigate the impact of the bias and the interannual variability of the EASST on the tropical Pacific in a CGCM. To determine the impact of the interannual variability of the EASST on the tropical Pacific, we compare a run in a fully coupled mode (CTL run) and a run in which the EASST is nudged toward the climatological monthly mean of the SST in the CTL run, but full air-sea coupling is allowed elsewhere (AT_m run). We find that, when the interannual variability of the EASST is excluded, the thermocline depth in the eastern equatorial Pacific is deepened, and the amplitude of the El Nino/Southern Oscillation is reduced by 30 % compared to the CTL run. The impact of the bias of the EASST on the tropical Pacific is investigated by comparing the AT_m run and a run in which the EASST is nudged toward the observed climatological monthly mean SST (AT_o run). It is found that, when the bias of the EASST is removed (i.e. AT_o run), the Gill–Matsuno type response to the warm SST anomalies in the western equatorial Atlantic induces low-level cyclonic anomalies in the eastern South Pacific, which leads to a deeper thermocline and colder SST in the South Pacific as compared to AT_m. The colder SST in the South Pacific reduces the precipitation along the South Pacific convergence zone. Our results of the model experiments demonstrate the importance of the EASST to the tropical Pacific climate.

26 citations


Journal Article
TL;DR: In this paper, the authors conducted a cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) to capture atmospheric and oceanic characteristics of the Madden-Julian Oscillation (MJO) in the central Indian Ocean from late 2011 to early 2012.
Abstract: [1] The cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) was conducted to capture atmospheric and oceanic characteristics of the Madden-Julian Oscillation (MJO) in the central Indian Ocean from late 2011 to early 2012. During CINDY2011, the research vessel (R/V) MIRAI stayed at 8°S, 80.5°E for two months during the special observing period (SOP). Intraseasonal convection associated with the MJO was organized in the central Indian Ocean in late October and late November during the SOP. In the middle of November, both sea surface temperature (SST) and mixed layer temperature decreased suddenly when cold low salinity water intruded into the upper layer around the R/V MIRAI. This intrusion was accompanied by a surface current change from southwestward to westward/west-northwestward associated with the passage of the annual oceanic downwelling Rossby wave. The mixed layer heat budget analysis shows that horizontal advection plays an important role in the abrupt cooling whereas the net surface heat flux cannot account for the cooling. This is an interesting result because the associated downwelling Rossby wave is usually considered to increase SST through a reduction of entrainment cooling. In addition, for the second MJO event convection was activated around 20 November over the central north and equatorial Indian Ocean but not in the south. It is suggested that the cooler surface waters (as seen at the location of the R/V MIRAI) tended to suppress the initial atmospheric convection, resulting in the lagged convective onset in the end of November over the central south Indian Ocean.

15 citations


Journal ArticleDOI
TL;DR: In this paper, the vertical diffusivity and the fluxes of heat, salt, and buoyancy due to turbulence and double diffusion were calculated based on a 14-day time series of observations of the dissipation rates of turbulent kinetic energy and thermal variance at 0°N, 156°E from 25 October to 18 November 2012.
Abstract: This study calculates the vertical diffusivity and the fluxes of heat, salt, and buoyancy due to turbulence and double diffusion based on a 14 day time series of observations of the dissipation rates of turbulent kinetic energy and thermal variance at 0°N, 156°E from 25 October to 18 November 2012. Salt fingering dominates shear-driven turbulence below 100 m. The estimated flux and associated vertical diffusivity due to double diffusion are approximately 1 order of magnitude higher for temperature and density and 2 orders of magnitude higher for salinity compared to values calculated from a turbulence model. Under weak turbulence conditions, the turbulence model significantly underestimates the magnitude of the vertical buoyancy flux with the flux having the wrong sign. Under these conditions, fluxes induced by double-diffusive mixing need to be considered.

14 citations