scispace - formally typeset
L

Le Cong

Researcher at Stanford University

Publications -  53
Citations -  39077

Le Cong is an academic researcher from Stanford University. The author has contributed to research in topics: CRISPR & Cas9. The author has an hindex of 31, co-authored 48 publications receiving 33605 citations. Previous affiliations of Le Cong include McGovern Institute for Brain Research & Wyss Institute for Biologically Inspired Engineering.

Papers
More filters
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Book ChapterDOI

Genome engineering using CRISPR-Cas9 system.

TL;DR: This chapter presents all relevant methods including the initial site selection, molecular cloning, delivery of guide RNAs and Cas9 into mammalian cells, verification of target cleavage, and assays for detecting genomic modification including indels and homologous recombination.

In vivo genome editing using Staphylococcus aureus Cas9

TL;DR: In this paper, the RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform and has been used for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle.
Journal ArticleDOI

In vivo genome editing using Staphylococcus aureus Cas9

TL;DR: Six smaller Cas9 orthologues are characterized and it is shown that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter.