scispace - formally typeset
Search or ask a question

Showing papers by "Leo E. Otterbein published in 2011"


Journal ArticleDOI
TL;DR: Homeostatic and therapeutic effects of CO and HO-1 were determined in chronic colonic inflammation in TCR-α–deficient (−/−) mice, in which colitis is mediated by Th2 cytokines, similar to the cytokine milieu described in human ulcerative colitis.
Abstract: Cigarette smoking is a significant environmental factor in the human inflammatory bowel diseases, remarkably, conferring protection in ulcerative colitis. We previously demonstrated that a prominent component of cigarette smoke, CO, suppresses Th17-mediated experimental colitis in IL-10−/− mice through a heme oxygenase (HO)-1–dependent pathway. In this study, homeostatic and therapeutic effects of CO and HO-1 were determined in chronic colonic inflammation in TCR-α–deficient (−/−) mice, in which colitis is mediated by Th2 cytokines, similar to the cytokine milieu described in human ulcerative colitis. TCRα−/− mice exposed to CO or treated with the pharmacologic HO-1 inducer cobalt protoporphyrin demonstrated amelioration of active colitis. CO and cobalt protoporphyrin suppressed colonic IL-1β, TNF, and IL-4 production, whereas IL-10 protein secretion was increased. CO induced IL-10 expression in macrophages and in vivo through an HO-1–dependent pathway. Bacterial products regulate HO-1 expression in macrophages through MyD88- and IL-10–dependent pathways. CO exposure and pharmacologic HO-1 induction in vivo resulted in increased expression of HO-1 and IL-10 in CD11b+ lamina propria mononuclear cells. Moreover, induction of the IL-10 family member IL-22 was demonstrated in CD11b− lamina propria mononuclear cells. In conclusion, CO and HO-1 induction ameliorated active colitis in TCRα−/− mice, and therapeutic effects correlated with induction of IL-10. This study provides further evidence that HO-1 mediates an important homeostatic pathway with pleiotropic anti-inflammatory effects in different experimental models of colitis and that targeting HO-1, therefore, is a potential therapeutic strategy in human inflammatory bowel diseases.

127 citations


Journal ArticleDOI
TL;DR: A mechanism for BVR in regulating the inflammatory response to endotoxin that requires eNOS-derived NO and TLR4 signaling in macrophages is elucidated and BV provides protection from acute liver damage and is dependent on the availability of NO.
Abstract: The cellular response to an inflammatory stressor requires a proinflammatory cellular activation followed by a controlled resolution of the response to restore homeostasis. We hypothesized that biliverdin reductase (BVR) by binding biliverdin (BV) quells the cellular response to endotoxin-induced inflammation through phosphorylation of endothelial nitric oxide synthase (eNOS). The generated NO, in turn, nitrosylates BVR, leading to nuclear translocation where BVR binds to the Toll-like receptor-4 (TLR4) promoter at the Ap-1 sites to block transcription. We show in macrophages that BV-induced eNOS phosphorylation (Ser-1177) and NO production are mediated in part by Ca2+/calmodulin-dependent kinase kinase. Furthermore, we show that BVR is S-nitrosylated on one of three cysteines and that this posttranslational modification is required for BVR-mediated signaling. BV-induced nuclear translocation of BVR and inhibition of TLR4 expression is lost in macrophages derived from Enos−/− mice. In vivo in mice, BV provides protection from acute liver damage and is dependent on the availability of NO. Collectively, we elucidate a mechanism for BVR in regulating the inflammatory response to endotoxin that requires eNOS-derived NO and TLR4 signaling in macrophages.

94 citations


Journal ArticleDOI
TL;DR: A joint role for HO-1 and the gasotransmitter CO is characterized and a mechanism for their potent cytoprotective effects in various pathologies is provided and exposure of mice to CO followed by genotoxin or radiation-induced injury led to diminished tissue DNA damage and improved survival.
Abstract: Stability and repair of DNA is of principal importance in cell survival. Heme oxygenase-1 (HO-1; Hmox1) is critical in maintaining cellular homeostasis, in large part through its ability to generate CO, but neither molecule has been studied in the setting of DNA damage. Naive Hmox1−/− mice exhibit excessive tissue levels of γ-histone H2A, whereas administration of genotoxic stressors or irradiation in HO-1–deficient cells resulted in loss of ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related protein and breast cancer 1, early onset induction with dysfunctional γ-H2AX foci and marked elevations in DNA damage. HO-1 induction or exposure to CO induced homologous recombination-mediated DNA repair through ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related protein. In vivo, exposure of mice to CO followed by genotoxin (Adriamycin) or radiation-induced injury led to diminished tissue DNA damage and improved survival. We characterize a joint role for HO-1 and the gasotransmitter CO for appropriate DNA repair and provide a mechanism for their potent cytoprotective effects in various pathologies.

69 citations


Journal ArticleDOI
TL;DR: It is demonstrated that administration of exogenous CO enhances rapid and early HC proliferation and, importantly, preserves function following PHTx, and may offer a viable therapeutic option to facilitate rapid recovery following P HTx.

30 citations


Journal ArticleDOI
25 Oct 2011-PLOS ONE
TL;DR: P38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response is indentify.
Abstract: Carbon monoxide (CO) dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ) and p38 mitogen-activated protein kinase (MAPK) dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS)-induced expression of the proinflammatory early growth response-1 (Egr-1) transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2). Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2−/−), produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

28 citations


Journal ArticleDOI
TL;DR: Studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes are summarized, with emphasis on HO-1, A20, and BVR.
Abstract: Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1), A20/tumor necrosis factor alpha inducible protein3 (tnfaip3), biliverdin reductase (BVR), Bcl2, and others) or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.

15 citations


Journal ArticleDOI
TL;DR: It is shown, in a model of balloon injury in rats, that the suppression of vascular smooth muscle cells (VSMC) proliferation by NO required HO-1, while induction of apoptosis of the VSMC by NO does not involveHO-1.
Abstract: Heme oxygenase-1 (HO-1, encoded by the HMOX1 gene) and inducible nitric oxide synthase (iNOS) have been implicated in vascular disease; however the role of these genes remains unclear. Therefore, we studied the mechanism by which iNOS-derived nitric oxide (NO) affects the intimal hyperplasia (IH) formation in relation to HO-1. We show, in a model of balloon injury in rats, that the suppression of vascular smooth muscle cells (VSMC) proliferation by NO required HO-1, while induction of apoptosis of the VSMC by NO does not involve HO-1. To better clarify the molecular mechanism of this finding, we used Hmox1(+/+) and Hmox1(-/-) VSMC exposed to NO. In Hmox1(+/+) VSMC, NO is antiproliferative (up to 34% inhibition) and it is associated to an increase of apoptosis (up to 35%) due to a decrease of X-linked inhibitor of apoptosis protein (XIAP) expression level and to the activation of caspase-3. In the absence of HO-1 (Hmox1(-/-) VSMC) apoptosis was significantly greater (69% p<0.01 vs. Hmox1(+/+) VSMC) demonstrating that HO-1 attenuated the pro-apoptotic effect of NO on VSMC. In the context of IH, the pro-apoptotic effect of NO on VSMC is increased in the absence of HO-1 and exerts therapeutic effects with a significant reduction in IH.

9 citations