scispace - formally typeset
Search or ask a question

Showing papers by "Mahaboobkhan Rasool published in 2021"



Journal ArticleDOI
31 Mar 2021-Cytokine
TL;DR: In this article, a novel therapeutic function of cyanidin towards targeted inhibition of IL-17A/IL-17RA signaling mediated disease severity and bone erosion in RA was proposed.

7 citations


Journal ArticleDOI
TL;DR: It is suggested that miR-532-3p attenuates the pro-inflammatory nature of macrophages by targeting ASK1/p38 MAPK signaling pathway and can be used as a molecular intervention for treating inflammatory diseases.
Abstract: Inflammation is a complex biological process which alters the normal physiological function of the immune system resulting in an abnormal microenvironment that leads to several clinical complications. The process of inflammation is mediated through various intracellular signaling factors inside the cells. Apoptosis signal–regulating kinase 1 (ASK1) is an inflammation-derived kinase that controls the activation of other family of kinases such as p38 mitogen–activated protein kinases (p38 MAPKs), which mediates various the inflammatory processes. In this study, we cultured THP-1 macrophage cells to undergo inflammatory proliferation with LPS (1 μg/ml) and TNFα (10 ng/ml) stimulation. Initial in silico analysis was utilized to predict novel microRNAs (miRNAs) that target ASK1 signaling and its expression levels in LPS and TNFα stimulated THP-1 cells were estimated. Among the miRNAs, miR-532-3p showcased the highest binding affinity towards ASK1 kinase. We witnessed that transient transfection of miR-532-3p diminished the levels of ASK1 and downstream phosphorylation/translocation of p38 MAPK. Furthermore, direct targeting of ASK1 resulted in regulation of uncontrolled release of cytokines (TNFα, IL-6, and IL-23) and chemokines (GM-CSF and MIP-2α). Overall, we suggest that miR-532-3p attenuates the pro-inflammatory nature of macrophages by targeting ASK1/p38 MAPK signaling pathway and can be used as a molecular intervention for treating inflammatory diseases.

6 citations


Journal ArticleDOI
TL;DR: In this paper, the modulatory effect of CYT387 on IL6/JAK/STAT signaling cascade in Fibroblast-like synoviocytes (FLS) induced RA pathogenesis was investigated.
Abstract: Fibroblast-like synoviocytes (FLS) are the critical effector cells primarily involved in rheumatoid arthritis (RA) disease pathogenesis. Interleukin (IL)-6, a proinflammatory cytokine most abundantly expressed in the rheumatoid synovium, promotes Janus kinase (JAK)/signal transducer and transcriptional activator (STAT) signaling cascade activation in RA-FLS, thus leading to its aggressive phenotype, invasiveness, and joint destruction. Momelotinib (CYT387) is a selective small-molecule inhibitor of JAK1/2 and is clinically approved to treat myelofibrosis. However, the therapeutic efficacy of CYT387 in FLS mediated RA pathogenesis is less known. In the present study, we investigated the modulatory effect of CYT387 on IL6/JAK/STAT signaling cascade in FLS induced RA pathogenesis. CYT387 treatment inhibited IL-6 induced high proliferative and migratory potential of FLS cells isolated from adjuvant-induced arthritic (AA) rats. CYT387 reduced the expression of PRMT5, survivin, and HIF-1α mediated by IL-6/sIL-6R in AA-FLS in a dose-dependent manner. The IL-6/sIL-6R induced expression of angiogenic factors such as VEGF and PIGF in AA-FLS cells was found downregulated by CYT387 treatment. Importantly, CYT387 significantly reduced IL-6/sIL-6R dependent activation of JAK1 and STAT3 and increased SOCS3 expression in AA-FLS cells. Next, the S3I-201 mediated blockade of STAT3 activation supported the inhibitory effect of CYT387 on IL-6/JAK1/STAT3 signaling cascade in AA-FLS. Overall, this study proves that CYT387 inhibits proliferation, migration, and pathogenic disease potential of FLS isolated from adjuvant-induced arthritic (AA) rats via targeting IL-6/JAK1/STAT3 signaling cascade.

4 citations


Journal ArticleDOI
17 Sep 2021
TL;DR: In this paper, the authors explored the underlying molecular mechanism and scientifically validated the therapeutic basis of Majoon Chobchini in rheumatoid arthritis (RA) and demonstrated its anti-arthritic efficacy in vivo using complete Freund's adjuvant-induced arthritic rat model.
Abstract: Majoon Chobchini, a polyherbal Unani compound, has been used holistically in India to treat rheumatoid arthritis. However, the potential mechanism underlying the antiarthritic efficacy of Majoon Chobchini has not been elucidated so far. This study was aimed to explore the underlying molecular mechanism and scientifically validate the therapeutic basis of Majoon Chobchini in rheumatoid arthritis (RA). The anti-arthritic efficacy of Majoon Chobchini was demonstrated in vivo using complete Freund's adjuvant-induced arthritic rat model and adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS). The expression of pro-inflammatory mediators and enzymes was evaluated in the serum and synovial tissues of adjuvant-induced arthritis (AIA) rats. In-vitro, AA-FLS, and bone marrow macrophages (BMMs) were co-cultured to evaluate the formation and activity of osteoclasts using TRAP staining analysis and pit formation assay, respectively. RANKL and OPG levels were detected using western blotting and qRT-PCR analysis. Furthermore, the involvement of JAK-STAT-3 signaling in the therapeutic efficacy of Majoon Chobchini was evaluated both in vivo and in vitro. Majoon Chobchini significantly reversed the physical symptoms in AIA rats with reduced expression of pro-inflammatory cytokines and enzymes. Notably, Majoon Chobchini alleviated cartilage degradation and bone erosion in AIA rats via inhibiting the activation of the JAK-STAT-3 signaling pathway in the AIA rats. Consistent with its effect in vivo, Majoon Chobchini decreased osteoclast inducing potential of AA-FLS and thus attenuated osteoclast formation and bone resorption in vitro. Taken together, our findings suggest that the JAK/STAT-3 signaling inhibition may underlie the mechanism through which Majoon Chobchini provides relief against RA symptoms.

3 citations