scispace - formally typeset
Search or ask a question

Showing papers by "Michael H. Bergin published in 2021"


Journal ArticleDOI
TL;DR: The concentrations of pollutants, and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.
Abstract: Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3 , with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3 . The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.

29 citations


Journal ArticleDOI
TL;DR: In this paper, the authors detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR(13 targets).
Abstract: Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR (13 targets). We detected a wide range of enteric targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging up to 4.7 × 102 gc per mair3 across all targets including heat-stable enterotoxigenic Escherichia coli, Campylobacter jejuni, enteroinvasive E. coli/Shigella spp., Salmonella spp., norovirus, and Cryptosporidium spp. Estimated 25, 76, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation.

27 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate the associations between personal exposure to PM2.5 and pulmonary outcomes in asthmatic children and find that increases in daily personal exposure were significantly associated with increased small, large, and total airway resistance, increased airway impedance, decreased lung function, and worsened scores of individual asthma symptoms and the total symptom score.
Abstract: Fine particulate matter (PM2.5) with a higher oxidative potential has been thought to be more detrimental to pulmonary health. We aim to investigate the associations between personal exposure to PM2.5 oxidative potential and pulmonary outcomes in asthmatic children. We measured each of the 43 asthmatic children 4 times for airway mechanics, lung function, airway inflammation, and asthma symptom scores. Coupling measured indoor and outdoor concentrations of PM2.5 mass, constituents, and oxidative potential with individual time-activity data, we calculated 24 h average personal exposures 0-3 days prior to a health outcome measurement. We found that increases in daily personal exposure to PM2.5 oxidative potential were significantly associated with increased small, large, and total airway resistance, increased airway impedance, decreased lung function, and worsened scores of individual asthma symptoms and the total symptom score. Among the PM2.5 constituents, organic matters largely of indoor origin contributed the greatest to PM2.5 oxidative potential. Given that the variability in PM2.5 oxidative potential was a stronger driver than PM2.5 mass for the variability in the respiratory health outcomes, it is suggested to reduce PM2.5 oxidative potential, particularly by reducing the organic matter constituent of indoor PM2.5, as a targeted source control strategy in asthma management.

25 citations


Journal ArticleDOI
TL;DR: It is suggested that systemic oxidative stress heightened by air pollution exposure may stimulate melatonin excretion as a defense mechanism to alleviate the adverse effects.

7 citations


Journal ArticleDOI
TL;DR: In this article, the authors assessed ARGs in aerosols in urban La Paz, Bolivia, where wastewater flows in engineered surface water channels through the densely populated urban core, and quantified key ARGs and a mobile integron (MI) via ddPCR and E. coli spp. as a fecal indicator by culture over two years during both the rainy and dry seasons in sites near wastewater flows.

6 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive study took place in Gandhinagar India and combined soiling monitoring (using a Campbell Scientific soiling station and a new, low-cost sensor called the Low-cost Alternative to Monitoring Photovoltaic Soiling, or LAMPS station) for all of 2019 with 3-week sampling cycles to analyze size distribution and composition.

5 citations


Journal ArticleDOI
TL;DR: In this paper, a random forest-convolutional neural network-local contrast normalization (RF-CNN-LCN) pipeline was developed to detect local PM2.5 hotspots at a 300 m resolution using satellite imagery and meteorological information.
Abstract: Satellite-based rapid sweeping screening of localized PM2.5 hotspots at fine-scale local neighborhood levels is highly desirable. This motivated us to develop a random forest–convolutional neural network–local contrast normalization (RF–CNN–LCN) pipeline that detects local PM2.5 hotspots at a 300 m resolution using satellite imagery and meteorological information. The RF–CNN joint model in the pipeline uses three meteorological variables and daily 3 m/pixel resolution PlanetScope satellite imagery to generate daily 300 m ground-level PM2.5 estimates. The downstream LCN processes the estimated PM2.5 maps to reveal local PM2.5 hotspots. The RF–CNN joint model achieved a low normalized root mean square error for PM2.5 of within ~31% and normalized mean absolute error of within ~19% on the holdout samples in both Delhi and Beijing. The RF–CNN–LCN pipeline reasonably predicts urban PM2.5 local hotspots and coolspots by capturing both the main intra-urban spatial trends in PM2.5 and the local variations in PM2.5 with urban landscape, with local hotspots relating to compact urban spatial structures and coolspots being open areas and green spaces. Based on 20 sampled representative neighborhoods in Delhi, our pipeline revealed an annual average 9.2 ± 4.0 μg m−3 difference in PM2.5 between the local hotspots and coolspots within the same community. In some cases, the differences were much larger; for example, at the Indian Gandhi International Airport, the increase was 20.3 μg m−3 from the coolest spot (the residential area immediately outside the airport) to the hottest spot (airport runway). This work provides a possible means of automatically identifying local PM2.5 hotspots at 300 m in heavily polluted megacities and highlights the potential existence of substantial health inequalities in long-term outdoor PM2.5 exposures even within the same local neighborhoods between local hotspots and coolspots.

5 citations


Posted ContentDOI
19 Feb 2021-medRxiv
TL;DR: Vardef et al. as discussed by the authors detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA via multiplex qPCR (37 targets) and ddPCR(13 targets).
Abstract: Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA via multiplex qPCR (37 targets) and ddPCR (13 targets). We detected a wide range enteric pathogen-specific targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging from non-detects to 4.7 [x] 102 gc per m3air for targets including ST-ETEC, C. jejuni, EIEC/Shigella spp., Salmonella spp., adenovirus, and Cryptosporidium spp. An estimated 25%, 76%, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=109 SRC="FIGDIR/small/21251650v1_ufig1.gif" ALT="Figure 1"> View larger version (57K): org.highwire.dtl.DTLVardef@13c817borg.highwire.dtl.DTLVardef@158e108org.highwire.dtl.DTLVardef@1e0626org.highwire.dtl.DTLVardef@125b214_HPS_FORMAT_FIGEXP M_FIG C_FIG SYNOPSISWe detect and quantify molecular targets associated with important enteric pathogens in outdoor aerosols from cities with poor sanitation to assess the potential role of the aeromicrobiological pathway in enteric infection transmission in such settings.

4 citations


Journal ArticleDOI
TL;DR: An increasing body of literature suggests that aerosol inhalation plays a primary role in COVID-19 transmission, particularly in indoor settings as mentioned in this paper, and Mechanistic stochastic models can help public healt...
Abstract: An increasing body of literature suggests that aerosol inhalation plays a primary role in COVID-19 transmission, particularly in indoor settings. Mechanistic stochastic models can help public healt...

4 citations


Journal ArticleDOI
TL;DR: In this paper, the authors found that exposure to fine particulate matter (PM2.5) and ozone (O3) may lead to inflammation and oxidative damage in the oral cavity, which is hypothesized to contribute to the worsening of airway inflammation and asthma symptoms.

2 citations