scispace - formally typeset
Search or ask a question

Showing papers by "Ole Paulsen published in 2009"


01 Jan 2009
TL;DR: It is found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave–ripple oscillations and cholinergically induced fast oscillations in submerged slices prepared from the hippocampus of rats and mice.
Abstract: Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave–ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.

205 citations


Journal ArticleDOI
TL;DR: It is reported that GABAA and GABAB receptor-mediated inhibition have distinct and complementary roles in balancing and terminating persistent activity and activation of GABAB receptors contributes to terminating Up states.
Abstract: Cortical networks spontaneously fluctuate between persistently active Up states and quiescent Down states. The Up states are maintained by recurrent excitation within local circuits, and can be turned on and off by synaptic input. GABAergic inhibition is believed to be important for stabilizing such persistent activity by balancing the excitation, and could have an additional role in terminating the Up state. Here, we report that GABAA and GABAB receptor-mediated inhibition have distinct and complementary roles in balancing and terminating persistent activity. In a model of Up–Down states expressed in slices of rat entorhinal cortex, the GABAA receptor antagonist, gabazine (50–500 nm), concentration-dependently decreased Up state duration, eventually leading to epileptiform bursts. In contrast, the GABAB receptor antagonist, CGP55845 (50 nm to 1 μm), increased the duration of persistent network activity, and prevented stimulus-induced Down state transitions. These results suggest that while GABAA receptor-mediated inhibition is necessary for balancing persistent activity, activation of GABAB receptors contributes to terminating Up states.

202 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice, and found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave-ripple oscillations and cholinergically induced fast oscillations.
Abstract: Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave–ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.

199 citations


Journal ArticleDOI
TL;DR: Local-circuit mechanisms involved in hippocampal CA3 gamma oscillations, one of the best understood locally generated network patterns in the mammalian brain, are discussed, suggesting that local gammascillations not only control when, but also how many and which pyramidal cells will fire during each gamma cycle.

147 citations


Journal ArticleDOI
TL;DR: Novel markers for murine subplate cells are identified by comparing gene expression of subplate and layer 6 of primary visual and somatosensory cortical areas of postnatal day (P)8 old mice using a microarray-based approach and localization of marker-positive cells in the reeler and p35-KO cortices suggests different subpopulations of sub plate cells.
Abstract: The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is essential. Only by determining the molecular taxonomy of this diverse class of neurons can we identify the subpopulations that may contribute differentially to cortical development. We identified novel markers for murine subplate cells by comparing gene expression of subplate and layer 6 of primary visual and somatosensory cortical areas of postnatal day (P)8 old mice using a microarray-based approach. We examined the utility of these markers in well-characterized mutants (reeler, scrambler, and p35-KO) where the subplate is displaced in relation to the cortical plate. In situ hybridization or immunohistochemistry confirmed subplate-selective expression of complexin 3, connective tissue growth factor, nuclear receptor-related 1/Nr4a2, and monooxygenase Dbh-like 1 while transmembrane protein 163 also had additional expression in layer 5, and DOPA decarboxylase was also present in the white matter. Localization of marker-positive cells in the reeler and p35-KO cortices suggests different subpopulations of subplate cells. These new markers open up possibilities for further identification of subplate subpopulations in research and in neuropathological diagnosis.

140 citations


Journal ArticleDOI
TL;DR: Amphiphilic donor-acceptor meso-ethynyl porphyrins with polar pyridinium electron- acceptor head groups and hydrophobic dialkyl-aniline electron donors have high molecular hyperpolarizabilities and high affinities for biological membranes.
Abstract: Amphiphilic donor-acceptor meso-ethynyl porphyrins with polar pyridinium electron-acceptor head groups and hydrophobic dialkyl-aniline electron donors have high molecular hyperpolarizabilities (as measured by hyper-Rayleigh scattering) and high affinities for biological membranes. When bound to water droplets in dodecane, or to the plasma membranes of living cells, they can be used for second harmonic generation (SHG) microscopy; an incident light of wavelength 840 nm generates a strong frequency-doubled signal at 420 nm. Copper(II) and nickel(II) porphyrin complexes give similar SHG signals to those of the free-base porphyrins, while exhibiting no detectable two-photon excited fluorescence.

134 citations


Journal ArticleDOI
TL;DR: An NMDA receptor subunit-dependent double dissociation of t-LTD and t- LTP mechanisms at layer 4-to-layer 2/3 synapses is demonstrated, and it is suggested that t- lTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.
Abstract: Spike timing-dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation (t-LTP) requires postsynaptic NMDA receptors, timing-dependent long-term depression (t-LTD) requires the activation of presynaptic NMDA receptors at layer 4-to-layer 2/3 synapses in barrel cortex. Here we investigated the developmental profile of t-LTD at layer 4-to-layer 2/3 synapses of mouse barrel cortex and studied their NMDA receptor subunit dependence. Timing-dependent LTD emerged in the first postnatal week, was present during the second week and disappeared in the adult, whereas t-LTP persisted in adulthood. An antagonist at GluN2C/D subunit-containing NMDA receptors blocked t-LTD but not t-LTP. Conversely, a GluN2A subunit-preferring antagonist blocked t-LTP but not t-LTD. The GluN2C/D subunit requirement for t-LTD appears to be synapse specific, as GluN2C/D antagonists did not block t-LTD at horizontal cross-columnar layer 2/3-to-layer 2/3 synapses, which was blocked by a GluN2B antagonist instead. These data demonstrate an NMDA receptor subunit-dependent double dissociation of t-LTD and t-LTP mechanisms at layer 4-to-layer 2/3 synapses, and suggest that t-LTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.

118 citations


Journal ArticleDOI
TL;DR: The findings support and extend the evidence that LTP at hippocampal CA3–CA1 synapses comprises a rapidly decaying, GluA1‐dependent component and a more sustained, GLUA 1‐independent component, induced and expressed via a separate mechanism involving GluN2B‐containing NMDA receptors, neuronal nitric oxide synthase and PKC.
Abstract: Long-term potentiation (LTP) at hippocampal CA3–CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N-methyl-d-aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A) subunit-containing AMPA receptors, recent evidence suggests that regulated synaptic trafficking of GluA2 subunits might also contribute to one or several phases of potentiation. However, it has so far been difficult to separate these two mechanisms experimentally. Here we used genetically modified mice lacking the GluA1 subunit (Gria1−/− mice) to investigate GluA1-independent mechanisms of LTP at CA3–CA1 synapses in transverse hippocampal slices. An extracellular, paired theta-burst stimulation paradigm induced a robust GluA1-independent form of LTP lacking the early, rapidly decaying component characteristic of LTP in wild-type mice. This GluA1-independent form of LTP was attenuated by inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC), two enzymes known to regulate GluA2 surface expression. Furthermore, the induction of GluA1-independent potentiation required the activation of GluN2B (NR2B) subunit-containing NMDA receptors. Our findings support and extend the evidence that LTP at hippocampal CA3–CA1 synapses comprises a rapidly decaying, GluA1-dependent component and a more sustained, GluA1-independent component, induced and expressed via a separate mechanism involving GluN2B-containing NMDA receptors, neuronal nitric oxide synthase and PKC.

71 citations


Journal ArticleDOI
TL;DR: It is found that the timing of afferent input can bidirectionally control the sign of spike timing–dependent plasticity at local synapses in rat hippocampus, providing a means by which temporal information in external input can be encoded in the local matrix of synaptic weights.
Abstract: This paper shows that synapses between CA1 pyramidal cells in the hippocampus and the tempero-ammonic pathway in the entorhinal cortex undergo spike timing-dependent plasticity.

59 citations


Journal ArticleDOI
TL;DR: The data indicate that frequency fluctuations in the beta‐band reflect synchronized activity in different cortical subnetworks, that both influence spike timing of output layer 5 neurons, and amplitude and frequency fluctuations within frequency bands may reflect activity in distinct cortical neuronal subnets that may process information in a parallel fashion.
Abstract: Human brain oscillations occur in different frequency bands that have been linked to different behaviours and cognitive processes. Even within specific frequency bands such as the beta- (14–30 Hz) or gamma-band (30–100 Hz), oscillations fluctuate in frequency and amplitude. Such frequency fluctuations most probably reflect changing states of neuronal network activity, as brain oscillations arise from the correlated synchronized activity of large numbers of neurons. However, the neuronal mechanisms governing the dynamic nature of amplitude and frequency fluctuations within frequency bands remain elusive. Here we show that in acute slices of rat prefrontal cortex (PFC), carbachol-induced oscillations in the beta-band show frequency and amplitude fluctuations. Fast and slow non-harmonic frequencies are distributed differentially over superficial and deep cortical layers, with fast frequencies being present in layer 3, while layer 6 only showed slow oscillation frequencies. Layer 5 pyramidal cells and interneurons experience both fast and slow frequencies and they time their spiking with respect to the dominant frequency. Frequency and phase information is encoded and relayed in the layer 5 network through timed excitatory and inhibitory synaptic transmission. Our data indicate that frequency fluctuations in the beta-band reflect synchronized activity in different cortical subnetworks, that both influence spike timing of output layer 5 neurons. Thus, amplitude and frequency fluctuations within frequency bands may reflect activity in distinct cortical neuronal subnetworks that may process information in a parallel fashion.

50 citations


Journal ArticleDOI
TL;DR: A simple analytical model can substantially capture the relationship between tonic excitation and phase of firing during simulated theta frequency and gamma frequency oscillations, over a range of physiological firing rates, and finds the phase code to be significantly more efficient.
Abstract: Theoretical and experimental studies suggest that oscillatory modes of processing play an important role in neuronal computations. One well supported idea is that the net excitatory input during oscillations will be reported in the phase of firing, a ‘rate-to-phase transform’, and that this transform might enable a temporal code. Here, we investigate the efficiency of this code at the level of fundamental single cell computations. We first develop a general framework for the understanding of the rate-to-phase transform as implemented by single neurons. Using whole cell patch-clamp recordings of rat hippocampal pyramidal neurons in vitro, we investigated the relationship between tonic excitation and phase of firing during simulated theta frequency (5 Hz) and gamma frequency (40 Hz) oscillations, over a range of physiological firing rates. During theta frequency oscillations, the phase of the first spike per cycle was a near-linear function of tonic excitation, advancing through a full 180 deg, from the peak to the trough of the oscillation cycle as excitation increased. In contrast, this relationship was not apparent for gamma oscillations, during which the phase of firing was virtually independent of the level of tonic excitatory input within the range of physiological firing rates. We show that a simple analytical model can substantially capture this behaviour, enabling generalization to other oscillatory states and cell types. The capacity of such a transform to encode information is limited by the temporal precision of neuronal activity. Using the data from our whole cell recordings, we calculated the information about the input available in the rate or phase of firing, and found the phase code to be significantly more efficient. Thus, temporal modes of processing can enable neuronal coding to be inherently more efficient, thereby allowing a reduction in processing time or in the number of neurons required.

Journal ArticleDOI
TL;DR: Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 μM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.
Abstract: Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.