scispace - formally typeset
Search or ask a question

Showing papers by "Pieter Van den Abbeele published in 2016"


Journal ArticleDOI
TL;DR: It is inferred that the modulating role of chronic smoke exposure as a latently present risk factor in the gut may be driven by the altered epithelial mucus profiles and changes in microbiome composition and immune factors.
Abstract: Summary Inflammatory bowel diseases (IBD) are complex multifactorial diseases characterized by an inappropriate host response to an altered commensal microbiome and dysfunctional mucus barrier. Cigarette smoking is the best known environmental risk factor in IBD. Here, we studied the influence of chronic smoke exposure on the gut microbiome, mucus layer composition and immune factors in conventional mice. We compared smoke-exposed with air-exposed mice (n = 12) after a smoke exposure of 24 weeks. Both Illumina sequencing (n = 6) and denaturing gradient gel electrophoresis (n = 12) showed that bacterial activity and community structure were significantly altered in the colon due to smoke exposure. Interestingly, an increase of Lachnospiraceae sp. activity in the colon was observed. Also, the mRNA expression of Muc2 and Muc3 increased in the ileum, whereas Muc4 increased in the distal colon of smoke-exposed mice (n = 6). Furthermore, we observed increased Cxcl2 and decreased Ifn-γ in the ileum, and increased Il-6 and decreased Tgf-β in the proximal colon. Tight junction gene expression remained unchanged. We infer that the modulating role of chronic smoke exposure as a latently present risk factor in the gut may be driven by the altered epithelial mucus profiles and changes in microbiome composition and immune factors.

130 citations


Journal ArticleDOI
TL;DR: The coexistence of different bifidobacterial strains with different ITF degradation fingerprints within the same intestinal region suggests cooperation for the degradation of ITF, with opportunities for cross-feeding on strain and/or species level.
Abstract: Inulin-type fructans (ITF) are known to cause a health-promoting bifidogenic effect, although the ITF degradation capacity of bifidobacteria in different intestinal regions remains unclear. The present study aims at offering new insights into this link, making use of a collection of 190 bifidobacterial strains, encompassing strains from gut biopsies (terminal ileum and proximal colon; mucosa-associated strains) and the simulator of the human intestinal microbial ecosystem (SHIME®; proximal and distal colon vessels; lumen-associated strains). A multivariate data analysis of all fermentation data revealed four clusters corresponding with different types of ITF degradation fingerprints, which were not correlated with the region in the intestine, suggesting that the degradation of ITF is uniform along the human intestine. Strains from cluster 1 consumed fructose, while strains from cluster 2 consumed more oligofructose than fructose. Higher fructose and oligofructose consumption was characteristic for clusters 3 and 4 strains, which degraded inulin too. In general, the mucosa-associated strains from biopsy origin seemed to be more specialized in the consumption of fructose and oligofructose, while the lumen-associated strains from SHIME origin displayed a higher degradation degree of inulin. Further, intra-species variability in ITF degradation was found, indicating strain-specific variations. The coexistence of different bifidobacterial strains with different ITF degradation fingerprints within the same intestinal region suggests cooperation for the degradation of ITF, with opportunities for cross-feeding on strain and/or species level.

42 citations


Journal ArticleDOI
27 Jul 2016
TL;DR: Overall, this study shows that pro- and prebiotics can beneficially modulate the in vitro mucosal microbiota, thus limiting occurrence of opportunistic pathogens among those mucosal microbes which may directly interact with the host given their proximity to the epithelium.
Abstract: The microbiota that colonises the intestinal mucus may particularly affect human health given its proximity to the epithelium. For instance, the presence of the adherent-invasive Escherichia coli (AIEC) in this mucosal microbiota has been correlated with Crohn's disease. Using short-term screening assays and a novel long-term dynamic gut model, which comprises a simulated mucosal environment (M-SHIME), we investigated how (potential) pro- and prebiotics may repress colonisation of AIEC from mucus. Despite that during the short-term screening assays, some of the investigated Lactobacillus strains adhered strongly to mucins, none of them competed with AIEC for mucin-adhesion. In contrast, AIEC survival and growth during co-culture batch incubations was decreased by Lactobacillus rhamnosus GG and L. reuteri 1063, which correlated with (undissociated) lactic acid and reuterin levels. Regarding the prebiotics, long-chain arabinoxylans (LC-AX) lowered the initial mucin-adhesion of AIEC, while both inulin (IN) and galacto-oligosaccharides (GOS) limited AIEC survival and growth during batch incubations. L. reuteri 1063, LC-AX and IN were thus retained for a long-term study with the M-SHIME. All treatments repressed AIEC from mucus without affecting AIEC numbers in the luminal content. As a possible explanation, L. reuteri 1063 treatment increased lactobacilli levels in mucus, while LC-AX and IN additionally increased mucosal bifidobacteria levels, thus leading to antimicrobial effects against AIEC in mucus. Overall, this study shows that pro- and prebiotics can beneficially modulate the in vitro mucosal microbiota, thus limiting occurrence of opportunistic pathogens among those mucosal microbes which may directly interact with the host given their proximity to the epithelium.

37 citations