scispace - formally typeset
Search or ask a question

Showing papers by "Ramesh Rengan published in 2015"


Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: Major tumour regressions are reported in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody and radiation and reproduced this effect in mouse models, showing that PD-L1 on melanoma cells allows tumours to escape anti- NCTLA4-based therapy, and the combination of radiation, anti- CTLA4 and anti-PD-L 1 promotes response and immunity through distinct mechanisms.
Abstract: Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.

1,872 citations


Journal ArticleDOI
TL;DR: Potential decreased toxicity indicates that IMPT could allow ENI while maintaining a favorable therapeutic ratio compared with photon IFRT, and demonstrates the feasibility of IMPT for LA-NSCLC ENI.

47 citations


Journal ArticleDOI
02 Jul 2015-Cancers
TL;DR: A primer on the physics of proton beam therapy for lung cancer is provided, and the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy are presented.
Abstract: Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

42 citations


Journal ArticleDOI
TL;DR: Definite dose radiation therapy may improve survival in a select subset of patients with minimal extrathoracic disease in whom local progression is of primary concern, and Prospective trials are needed to further evaluate the role of local control in oligometastatic NSCLC.
Abstract: Purpose A subset of patients with minimal extrathoracic disease may benefit from aggressive primary tumor treatment. We report comparative outcomes in oligometastatic non-small cell lung cancer (NSCLC) treated with and without definitive, conventionally fractionated thoracic radiation therapy. Methods and materials We identified consecutive patients with stage IV NSCLC who had an Eastern Cooperative Oncology Group performance status ≤2 and ≤4 total sites of metastatic disease and who had been prescribed ≥50 Gy of thoracic radiation. Results Twenty-nine patients with oligometastatic NSCLC were identified between January 2004 and August 2010. Median survival was 22 months from diagnosis. Four patients (14%) experienced pneumonitis greater than or equal to grade 3; 6 (21%) had esophagitis greater than or equal to grade 3. Local control was associated with improved survival ( P = .02). In matched subset analysis, median survival was 9 months ( P P = .01). On multivariable analysis, radiation ( P P P Conclusions Definitive dose radiation therapy may improve survival in a select subset of patients with minimal extrathoracic disease in whom local progression is of primary concern. Prospective trials are needed to further evaluate the role of local control in oligometastatic NSCLC.

18 citations


Journal ArticleDOI
TL;DR: The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy by applying variational regularization.
Abstract: The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.

9 citations


Journal ArticleDOI
TL;DR: Establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo-US Tumor Board are identified.
Abstract: Purpose To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.

2 citations