scispace - formally typeset
R

Ran Canetti

Researcher at Boston University

Publications -  318
Citations -  41465

Ran Canetti is an academic researcher from Boston University. The author has contributed to research in topics: Cryptography & Cryptographic protocol. The author has an hindex of 83, co-authored 308 publications receiving 38660 citations. Previous affiliations of Ran Canetti include Massachusetts Institute of Technology & Technion – Israel Institute of Technology.

Papers
More filters
Proceedings ArticleDOI

Universally composable security: a new paradigm for cryptographic protocols

TL;DR: The notion of universally composable security was introduced in this paper for defining security of cryptographic protocols, which guarantees security even when a secure protocol is composed of an arbitrary set of protocols, or more generally when the protocol is used as a component of a system.

HMAC: Keyed-Hashing for Message Authentication

TL;DR: This document describes HMAC, a mechanism for message authentication using cryptographic hash functions that can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key.
Book ChapterDOI

Keying Hash Functions for Message Authentication

TL;DR: Two new, simple, and practical constructions of message authentication schemes based on a cryptographic hash function, NMAC and HMAC, are proven to be secure as long as the underlying hash function has some reasonable cryptographic strengths.
Book ChapterDOI

Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels

TL;DR: In this article, the authors present a formalism for the analysis of key exchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any key exchange protocol that satisfies the security definition can be composed with symmetric encryption and authentication functions to provide provably secure communication channels.
Journal ArticleDOI

Security and Composition of Multiparty Cryptographic Protocols

TL;DR: In this article, the authors present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs, and show that, with respect to these definitions, security is preserved under a natural composition operation.