scispace - formally typeset
Search or ask a question

Showing papers by "Riccardo Bommarco published in 2021"


Journal ArticleDOI
TL;DR: The results highlight that agri-environmental policies should promote the retention of existing semi-natural habitats and encourage landscape crop diversity to provide pollinators with sufficient food and nesting resources.

49 citations


Journal ArticleDOI
TL;DR: In this paper, a hierarchical decision support system of management actions for integrated pest and pollinator management (IPPM) is presented, where priority is given to proactive measures at the base of the pyramid, which are undertaken through landscape and crop field management of mobile organisms, primarily arthropods.
Abstract: The objective of integrated pest and pollinator management (IPPM) is to co-manage for pest control and pollination goals. Departing from the well-established concept of integrated pest management, we include pollinator management in a hierarchical decision support system of management actions. We depict this support system as an IPPM pyramid. Priority is given to proactive measures at the base of the pyramid, which are undertaken through landscape and crop field management of mobile organisms, primarily arthropods. Farther up the pyramid, practices in the form of reactive use of biotic and abiotic inputs should align with basal actions. The goal of IPPM is to minimize trade-offs, and to maximize co-benefits and synergies between pest and pollinator management. We contend that IPPM has the potential to contribute to sustainable pest control and crop pollination, as well as provide broader environmental benefits.

28 citations


Journal ArticleDOI
TL;DR: It is suggested that yield losses can be greatly reduced when both water stress and insect herbivory are reduced simultaneously, and reducing only one stressor has negligible benefits on yield as long as the crop is suffering from the other stressor.
Abstract: Climate change is predicted to hamper crop production due to precipitation deficits and warmer temperatures inducing both water stress and increasing herbivory due to more abundant insect pests. Consequently, crop yields will be impacted simultaneously by abiotic and biotic stressors. Extensive yield losses due to such climate change stressors might, however, be mitigated by ecosystem services such as insect pollination. We examined the single and combined effects of water stress, insect herbivory and insect pollination on faba bean yield components and above- and belowground plant biomass under realistic field conditions. We used rainout shelters to simulate a scenario in line with climate change projections, with adequate water supply at sowing followed by a long period without precipitation. This induced a gradually increasing water stress, culminating around crop flowering and yield formation. We found that gradually increasing water stress combined with insect herbivory by aphids interactively shaped yield in faba beans. Individually, aphid herbivory reduced yield by 79% and water stress reduced yield by 52%. However, the combined effect of water stress and aphid herbivory reduced yield less (84%) than the sum of the individual stressor effects. In contrast, insect pollination increased yield by 68% independently of water availability and insect herbivory. Our results suggest that yield losses can be greatly reduced when both water stress and insect herbivory are reduced simultaneously. In contrast, reducing only one stressor has negligible benefits on yield as long as the crop is suffering from the other stressor. We call for further exploration of interactions among ecosystem services and biotic and abiotic stressors that simulate realistic conditions under climate change.

19 citations


Journal ArticleDOI
TL;DR: In this paper, the authors quantified the combined effects of temperature and precipitation on county-level maize and soybean yields from irrigated and rainfed cropping in the USA in 1970-2010, and estimated the yield changes due to expected future changes in temperatures and precipitation.
Abstract: Heat and water stress can drastically reduce crop yields, particularly when they co-occur, but their combined effects and the mitigating potential of irrigation have not been simultaneously assessed at the regional scale. We quantified the combined effects of temperature and precipitation on county-level maize and soybean yields from irrigated and rainfed cropping in the USA in 1970-2010, and estimated the yield changes due to expected future changes in temperature and precipitation. We hypothesized that yield reductions would be induced jointly by water and heat stress during the growing season, caused by low total precipitation (P-GS) and high mean temperatures (T-GS) over the whole growing season, or by many consecutive dry days (CDDGS) and high mean temperature during such dry spells (T-CDD) within the season. Whole growing season (T-GS, P-GS) and intra-seasonal climatic indices (T-CDD, CDDGS) had comparable explanatory power. Rainfed maize and soybean yielded least under warm and dry conditions over the season, and with longer dry spells and higher dry spell temperature. Yields were lost faster by warming under dry conditions, and by lengthening dry spells under warm conditions. For whole season climatic indices, maize yield loss per degree increase in temperature was larger in wet compared with dry conditions, and the benefit of increased precipitation greater under cooler conditions. The reverse was true for soybean. An increase of 2 degrees C in T-GS and no change in precipitation gave a predicted mean yield reduction across counties of 15.2% for maize and 27.6% for soybean. Irrigation alleviated both water and heat stresses, in maize even reverting the response to changes in temperature, but dependencies on temperature and precipitation remained. We provide carefully parameterized statistical models including interaction terms between temperature and precipitation to improve predictions of climate change effects on crop yield and context-dependent benefits of irrigation.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the authors surveyed bees in 16 sites in Sweden in summer 2018 and found that adding honeybee hives in combination with flower strips to landscapes with few floral resources should be avoided as it cancelled the positive effect of flower strips.

12 citations



Journal ArticleDOI
TL;DR: In this paper, the benefit of insect pollination in 17 organic faba bean (Vicia faba minor L.) fields in southern Sweden with or without sown annual flower strips and without added honeybee hives was investigated.

8 citations


Journal ArticleDOI
TL;DR: In this article, the effects of local management of organic manure or inorganic mineral fertilization on pest suppression were investigated in an existing long-term agricultural field experiment to investigate the effect of predator community composition on the suppression of aphid growth.
Abstract: Biological control by natural enemies is a valuable ecosystem service. The predator community in a crop field is a combination of predators dwelling in the field and those moving into it from the surrounding landscape. The former is mainly affected by field management, the latter more by the composition of the surrounding landscape. Yet, separate and combined effects of local and landscape management on pest suppression have seldom been investigated.We set-up mesocosms within an existing long-term agricultural field experiment to investigate the effects of local management of organic manure or inorganic mineral fertilisation, and simulated the spillover from the surrounding landscape of different predator types: no predators, generalist predators (wolf spiders) and specialist predators (ladybirds). We examined whether aphid density was driven by top-down or bottom-up processes under different fertilisation treatments, and how the magnitude of pest suppression was affected by predator community composition.We found positive synergistic effects between manure fertilisation and predator spillover on the suppression of aphid growth. Top-down suppression of aphids was more effective under manure fertilisation and in presence of specialist predators (ladybirds). Bottom-up effects on the plant biomass growth dominated in inorganically fertilised plots.Organic and inorganic fertilisation gave the same yield, but through different mechanisms. The abundance of locally emerging predators in the manure treatment increased top-down pest suppression yielding plant biomass levels comparable with inorganically fertilised plants, being the latter driven by bottom-up effects.Synthesis and applications. Organic fertilisation enhanced local emergence of predators increasing top-down pest suppression. In contrast, local predator communities were unable to suppress aphid populations in inorganic and no fertilisation treatments. Here, predator inflow from outside the crop field was essential for lowering aphid population growth. Managing landscapes to promote mobile predators emerges as particularly important for crop fields without manure amendments. We advise the active promotion of both local predators in the crop field and mobile predators in the landscape to secure the conservation of biological insect pest suppression.

8 citations


Journal ArticleDOI
TL;DR: Evaluating predictive performance of statistical models explaining wild bee abundance in a mass flowering crop and its implications for Ecography ‐ (2021)
Abstract: Wild bee populations are threatened by current agricultural practices in many parts of the world, which may put pollination services and crop yields at risk. Loss of pollination services can potentially be predicted by models that link bee abundances with landscape-scale land-use, but there is little knowledge on the degree to which these statistical models are transferable across time and space. This study assesses the transferability of models for wild bee abundance in a mass-flowering crop across space (from one region to another) and across time (from one year to another). The models used existing data on bumblebee and solitary bee abundance in winter oilseed rape fields, together with high-resolution land-use crop-cover and semi-natural habitats data, from studies conducted in five different regions located in four countries (Sweden, Germany, Netherlands and the UK), in three different years (2011, 2012, 2013). We developed a hierarchical model combining all studies and evaluated the transferability using cross-validation. We found that both the landscape-scale cover of mass-flowering crops and permanent semi-natural habitats, including grasslands and forests, are important drivers of wild bee abundance in all regions. However, while the negative effect of increasing mass-flowering crops on the density of the pollinators is consistent between studies, the direction of the effect of semi-natural habitat is variable between studies. The transferability of these statistical models is limited, especially across regions, but also across time. Our study demonstrates the limits of using statistical models in conjunction with widely available land-use crop-cover classes for extrapolating pollinator density across years and regions, likely in part because input variables such as cover of semi-natural habitats poorly capture variability in pollinator resources between regions and years.

7 citations


Journal ArticleDOI
TL;DR: It is suggested that plant-soil feedback in response to N-eutrophication is contingent on biotic variables such as herbivory and plant species, and that biotic and abiotic disturbances may have additive effects on the soil microbiome structure.
Abstract: Plant-soil feedback is increasingly recognized as a vital framework to analyze multi-trophic interactions involving herbivores, plants and microbes, but research is still lacking on understanding such feedback in the context of global change. In grasslands, patterns of herbivory are expected to be affected by global change, further modifying existing plant-soil feedbacks. We tested this by evaluating the individual and combined impacts of aboveground herbivory by a generalist leaf-chewer and nitrogen (N) eutrophication, simulating elevated N deposition, on soil microbial communities and root colonization of arbuscular mycorrhizal fungi and related these to existing data on plant functional types and community composition. We found that colonization of arbuscular mycorrhizal fungi in the plant roots responded differently to treatments depending on host plant species in patterns consistent with the changes in the plant community composition and biomass. Further, the effect of aboveground herbivory on plant-soil interactions was comparable and even exceeded that of N-eutrophication, with the additive effects of herbivory and N-eutrophication on the soil microbiome being stronger than each factor separately. Our results suggest that plant-soil feedback in response to N-eutrophication is contingent on biotic variables such as herbivory and plant species, and that biotic and abiotic disturbances may have additive effects on the soil microbiome structure.

7 citations


Journal ArticleDOI
01 Jan 2021-PeerJ
TL;DR: In this article, the authors examined how long-term addition of organic matter affects the abundance of different soil biota across trophic levels and the role that the quality of the organic amendments plays.
Abstract: Addition of organic amendments is a commonly used practice to offset potential loss of soil organic matter from agricultural soils. The aim of the present study was to examine how long-term addition of organic matter affects the abundance of different soil biota across trophic levels and the role that the quality of the organic amendments plays. Here we used a 17-year-old fertilization experiment to investigate soil biota responses to four different organic fertilizers, compared with two mineral nitrogen fertilizers and no fertilization, where the organic fertilizers had similar carbon content but varied in their carbon to nitrogen ratios. We collected soil samples and measured a wide range of organisms belonging to different functional groups and trophic levels of the soil food web. Long-term addition of organic and mineral fertilizers had beneficial effects on the abundances of most soil organisms compared with unfertilized soil, but the responses differed between soil biota. The organic fertilizers generally enhanced bacteria and earthworms. Fungi and nematodes responded positively to certain mineral and organic fertilizers, indicating that multiple factors influenced by the fertilization may affect these heterogeneous groups. Springtails and mites were less affected by fertilization than the other groups, as they were present at relatively high abundances even in the unfertilized treatment. However, soil pH had a great influence on springtail abundance. In summary, the specific fertilizer was more important in determining the numerical and compositional responses of soil biota than whether it was mineral or organic. Overall, biennial organic amendments emerge as insufficient, by themselves, to promote soil organisms in the long run, and would need to be added annually or combined with other practices affecting soil quality, such as no or reduced tillage and other crop rotations, to have a beneficial effect.

Posted ContentDOI
06 May 2021-bioRxiv
TL;DR: Laubmeier et al. as discussed by the authors developed a dynamic food-web model incorporating body size, microhabitat use, and non-consumptive predator effects and used simulations to optimize the experimental design.
Abstract: Food webs map feeding interactions among species, providing a valuable tool for understanding and predicting community dynamics. Trait-based approaches to food webs are increasingly popular, using e.g. species’ body sizes to parameterize dynamic models. Although partly successful, models based on body size often cannot fully recover observed dynamics, suggesting that size alone is not enough. For example, differences in species’ use of microhabitat or non-consumptive effects of other predators may affect dynamics in ways not captured by body size. Here, we report on the results of a pre-registered study (Laubmeier et al. 2018) where we developed a dynamic food-web model incorporating body size, microhabitat use, and non-consumptive predator effects and used simulations to optimize the experimental design. Now, after performing the mesocosm experiment to generate empirical time-series of insect herbivore and predator abundance dynamics, we use the inverse method to determine parameter values of the dynamic model. We compare four alternative models with and without microhabitat use and non-consumptive predator effects. The four models achieve similar fits to observed data on herbivore population dynamics, but build on different estimates for the same parameters. Thus, each model predicts substantially different effects of each predator on hypothetical new prey species. These findings highlight the imperative of understanding the mechanisms behind species interactions, and the relationships mediating the effects of traits on trophic interactions. In particular, we believe that increased understanding of the estimates of optimal predator-prey body-size ratios and maximum feeding rates will improve future predictions. In conclusion, our study demonstrates how iterative cycling between theory, data and experiment may be needed to hone current insights into how traits affect food-web dynamics.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the potential for apparent competition between multiple populations within and between habitat types, and examined the impact of landscape composition upon these effects, and finally investigated the link between the apparent competition and realised attack rates.
Abstract: Arthropod communities dwelling in adjacent habitats are able to impact one another via shared natural enemies. In agricultural landscapes, drastic differences in resource availability between crop and non-crop habitats cause variation in insect herbivore densities over short distances, potentially driving inter-habitat effects. Moreover, the composition of the landscape in which the habitats are embedded likely affects realised attack rates from natural enemies via impacts on local arthropod community structure. Here, we examine indirect effects between herbivore species within and between habitat types by calculating the potential for apparent competition between multiple populations. Firstly, we aim to determine how disparities in resource availability impact the strength of the potential for apparent competition occurring between habitats, secondly to examine the impact of landscape composition upon these effects, and finally to couch these observations in reality by investigating the link between the potential for apparent competition and realised attack rates. We used DNA metabarcoding to characterise host-parasitoid interactions within two habitat types (with divergent nutrient inputs) at 11 locations with variable landscape composition within an agroecosystem context. We then used these interaction networks to estimate the potential for apparent competition between each host pair and to compare expected versus realised attack rates across the system. Shared natural enemies were found to structure host herbivore communities within and across habitat boundaries. The size of this effect was related to the resource availability of habitats, such that the habitat with high nutrient input exerted a stronger effect. The overall potential for apparent competition declined with increasing land-use intensity in the surrounding landscape and exhibited a discernible impact on realised attack rates upon herbivore species. Thus, our results suggest that increasing the proportion of perennial habitat in agroecosystems could increase the prevalence of indirect effects such as apparent competition among insect herbivore communities, potentially leading to enhanced population regulation via increased attack rates from natural enemies like parasitoid wasps.