scispace - formally typeset
Search or ask a question

Showing papers by "Richard Berger published in 2013"


Journal ArticleDOI
TL;DR: The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8MJ of energy per pulse as discussed by the authors.
Abstract: The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser–plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.

92 citations


Journal ArticleDOI
TL;DR: In this paper, the frequency of electron and ion acoustic wave simulations with a multi-species, parallelized Vlasov code has been analyzed and compared to the original results of the same model, showing that the positive frequency shift from trapped electrons is dominant for the effective electron-to-ion temperature ratio.
Abstract: Fully non-linear kinetic simulations of electron plasma and ion acoustic waves (IAWs) have been carried out with a new multi-species, parallelized Vlasov code. The numerical implementation of the Vlasov model and the methods used to compute the wave frequency are described in detail. For the first time, the nonlinear frequency of IAWs, combining the contributions from electron and ion kinetic effects and from harmonic generation, has been calculated and compared to Vlasov results. Excellent agreement of theory with simulation results is shown at all amplitudes, harmonic generation being an essential component at large amplitudes. For IAWs, the positive frequency shift from trapped electrons is confirmed and is dominant for the effective electron-to-ion temperature ratio, Z Te/Ti ≳ 10 with Z as the charge state. Furthermore, numerical results demonstrate unambiguously the dependence [R. L. Dewar, Phys. Fluids 15, 712 (1972)] of the kinetic shifts on details of the distribution of the trapped particles, whi...

82 citations


Journal ArticleDOI
TL;DR: In this paper, a series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.
Abstract: Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.

66 citations


Journal ArticleDOI
TL;DR: In this paper, the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign is reported.
Abstract: First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

66 citations


Journal ArticleDOI
TL;DR: Particle-in-cell simulations including both collisional and collisionless effects are compared to the experimental measurements and show rapid electron and ion heating consistent with the experimental measured temperatures.
Abstract: Rapid electron and ion heating is observed in collisionless counterstreaming plasma flows and explained via a novel heating mechanism that couples the electron and ion temperatures. Recent experiments measure plasma conditions 4 mm from the surface of single foil (single plasma stream) and double foils (two counterstreaming plasmas) targets using Thomson scattering. Significant increases in electron and ion temperatures (from $l100\text{ }\text{ }\mathrm{eV}$ to $g1\text{ }\text{ }\mathrm{keV}$) compared to the single foil geometry are observed. While electrons are heated by friction on opposite going ions, ion-ion collisions cannot explain the observed ion heating. Also, density and flow velocity measurements show negligible slow down and rule out stagnation. The nonlinear saturation of an acoustic two-stream electrostatic instability is predicted to couple the ion temperature to the electron temperature through the dynamic evolution of the instability threshold. Particle-in-cell simulations including both collisional and collisionless effects are compared to the experimental measurements and show rapid electron and ion heating consistent with the experimental measurements.

60 citations


Journal ArticleDOI
TL;DR: In this paper, cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry.
Abstract: Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing the plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.

47 citations


Journal ArticleDOI
TL;DR: The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations.
Abstract: The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T-i/T-e, is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.

20 citations


Journal ArticleDOI
TL;DR: Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves and find an amplitude threshold for self-focusing γTPMI/νE∼1 that supports the analysis of Rose.
Abstract: Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Delta(m) relative to the initial width Delta(0) and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability gamma(TPMI) divided by the loss rate of field energy nu(E) to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing gamma(TPMI)/nu(E)similar to 1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

18 citations