scispace - formally typeset
Search or ask a question

Showing papers by "Robert Henderson published in 2021"


Journal ArticleDOI
TL;DR: In this article, the associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250-400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.

42 citations


Journal ArticleDOI
TL;DR: A deep network built to take advantage of the multiple features that can be extracted from a camera's histogram data is developed, providing significant image resolution enhancement and image denoising across a wide range of signal-to-noise ratios and photon levels.
Abstract: The number of applications that use depth imaging is increasing rapidly, e.g. self-driving autonomous vehicles and auto-focus assist on smartphone cameras. Light detection and ranging (LIDAR) via single-photon sensitive detector (SPAD) arrays is an emerging technology that enables the acquisition of depth images at high frame rates. However, the spatial resolution of this technology is typically low in comparison to the intensity images recorded by conventional cameras. To increase the native resolution of depth images from a SPAD camera, we develop a deep network built to take advantage of the multiple features that can be extracted from a camera’s histogram data. The network is designed for a SPAD camera operating in a dual-mode such that it captures alternate low resolution depth and high resolution intensity images at high frame rates, thus the system does not require any additional sensor to provide intensity images. The network then uses the intensity images and multiple features extracted from down-sampled histograms to guide the up-sampling of the depth. Our network provides significant image resolution enhancement and image denoising across a wide range of signal-to-noise ratios and photon levels. Additionally, we show that the network can be applied to other data types of SPAD data, demonstrating the generality of the algorithm.

30 citations


07 Jun 2021
TL;DR: In this paper, a search for chargino-$neutralino pair production in three-lepton final states with missing transverse momentum was presented, based on a dataset of 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC.
Abstract: A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.

28 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used CNNs for high-performance object detection using a single-photon avalanche diodes (SPADs) camera system, which outputs 16-bin photon timing histograms with 64×32 spatial resolution.
Abstract: 3D time-of-flight (ToF) imaging is used in a variety of applications such as augmented reality (AR), computer interfaces, robotics and autonomous systems. Single-photon avalanche diodes (SPADs) are one of the enabling technologies providing accurate depth data even over long ranges. By developing SPADs in array format with integrated processing combined with pulsed, flood-type illumination, high-speed 3D capture is possible. However, array sizes tend to be relatively small, limiting the lateral resolution of the resulting depth maps and, consequently, the information that can be extracted from the image for applications such as object detection. In this paper, we demonstrate that these limitations can be overcome through the use of convolutional neural networks (CNNs) for high-performance object detection. We present outdoor results from a portable SPAD camera system that outputs 16-bin photon timing histograms with 64×32 spatial resolution, with each histogram containing thousands of photons. The results, obtained with exposure times down to 2 ms (equivalent to 500 FPS) and in signal-to-background (SBR) ratios as low as 0.05, point to the advantages of providing the CNN with full histogram data rather than point clouds alone. Alternatively, a combination of point cloud and active intensity data may be used as input, for a similar level of performance. In either case, the GPU-accelerated processing time is less than 1 ms per frame, leading to an overall latency (image acquisition plus processing) in the millisecond range, making the results relevant for safety-critical computer vision applications which would benefit from faster than human reaction times.

17 citations


Journal ArticleDOI
TL;DR: In this paper, searches for new resonances in the diphoton final state, with spin 0 as predicted by theories with an extended Higgs sector and with spin 2 using a warped extra-dimension benchmark model, are presented using 139 fb−1 of s = 13 TeV pp collision data collected by the ATLAS experiment at the LHC.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a high-speed optical scanning microscope capable of capturing time resolved images across 512 spectral and 32 time channels in a single acquisition with the potential for ~0.2 frames per second (256 × 256 image pixels).
Abstract: The use of optical techniques to interrogate wide ranging samples from semiconductors to biological tissue for rapid analysis and diagnostics has gained wide adoption over the past decades. The desire to collect ever more spatially, spectrally and temporally detailed optical signatures for sample characterization has specifically driven a sharp rise in new optical microscopy technologies. Here we present a high-speed optical scanning microscope capable of capturing time resolved images across 512 spectral and 32 time channels in a single acquisition with the potential for ~0.2 frames per second (256 × 256 image pixels). Each pixel in the resulting images contains a detailed data cube for the study of diverse time resolved light driven phenomena. This is enabled by integration of system control electronics and on-chip processing which overcomes the challenges presented by high data volume and low imaging speed, often bottlenecks in previous systems.

13 citations


Journal ArticleDOI
Georges Aad1, Alexander Kupco1, Jay Chan, Timo Dreyer  +2948 moreInstitutions (2)
TL;DR: In this article, the effect of photon-photon interactions in the strong electromagnetic fields of colliding high-energy lead nuclei was studied using the LHC with the ATLAS detector.
Abstract: Exclusive dimuon production in ultraperipheral collisions (UPC), resulting from photon-photon interactions in the strong electromagnetic fields of colliding high-energy lead nuclei, $\mathrm{PbPb}(\gamma\gamma) \rightarrow \mu^+\mu^- (\mathrm{Pb}^{(\star)}\mathrm{Pb}^{(\star)} )$, is studied using $\mathcal{L}_{\mathrm{int}} = 0.48$ nb$^{-1}$ of $\sqrt{s_\mathrm{NN}}=5.02$ TeV lead-lead collision data at the LHC with the ATLAS detector. Dimuon pairs are measured in the fiducial region $p_{\mathrm{T}\mu} > 4$ GeV, $|\eta_{\mu}| 10$ GeV, and $p_{\mathrm{T,\mu\mu}} < 2$ GeV. The primary background from single-dissociative processes is extracted from the data using a template fitting technique. Differential cross sections are presented as a function of $m_{\mu\mu}$, absolute pair rapidity ($|y_{\mu\mu}|$), scattering angle in the dimuon rest frame ($|\cos \vartheta^{\star}_{\mu\mu}|$) and the colliding photon energies. The total cross section of the UPC $\gamma \gamma \rightarrow \mu^{+}\mu^{-}$ process in the fiducial volume is measured to be $\sigma_{\mathrm{fid}}^{\mu\mu} = 34.1 \! \pm \! 0.3 \mathrm{(stat.)} \! \pm \! 0.7 \mathrm{(syst.)}$ $\mu\mathrm{b}$. Generally good agreement is found with calculations from STARlight, which incorporate the leading-order Breit-Wheeler process with no final-state effects, albeit differences between the measurements and theoretical expectations are observed. In particular, the measured cross sections at larger $|y_{\mu\mu}|$ are found to be about 10-20% larger in data than in the calculations, suggesting the presence of larger fluxes of photons in the initial state. Modification of the dimuon cross sections in the presence of forward and/or backward neutron production is also studied and is found to be associated with a harder incoming photon spectrum, consistent with expectations.

13 citations


Journal ArticleDOI
TL;DR: A first spectral-domain optical coherence tomography (SD-OCT) system deploying a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) based, time-resolved line sensor is presented and potential improvements are identified for advanced photonic applications.
Abstract: We present a first spectral-domain optical coherence tomography (SD-OCT) system deploying a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) based, time-resolved line sensor. The sensor with 1024 pixels achieves a sensitivity of 87 dB at an A-scan rate of 1 kHz using a supercontinuum laser source with a repetition rate of 20 MHz, 38 nm bandwidth, and 2 mW power at 850 nm centre wavelength. In the time-resolved mode of the sensor, the system combines low-coherence interferometry (LCI) and massively parallel time-resolved single-photon counting to control the detection of interference spectra on the single-photon level based on the time-of-arrival of photons. For proof of concept demonstration of the combined detection scheme we show the acquisition of time-resolved interference spectra and the reconstruction of OCT images from selected time bins. Then, we exemplify the temporal discrimination feature with 50 ps time resolution and 249 ps timing uncertainty by removing unwanted reflections from along the optical path at a 30 mm distance from the sample. The current limitations of the proposed technique in terms of sensor parameters are analysed and potential improvements are identified for advanced photonic applications.

10 citations


19 Aug 2021
TL;DR: In this paper, a search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented.
Abstract: A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

7 citations


07 Jun 2021
TL;DR: In this article, the ATLAS triggers used to identify jets containing $b$-hadrons were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018.
Abstract: Several improvements to the ATLAS triggers used to identify jets containing $b$-hadrons ($b$-jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the $b$-jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same $b$-jet identification efficiency compared to the performance in Run 1 (2011-2012). The efficiency to identify $b$-jets in the trigger, and the conditional efficiency for $b$-jets that satisfy offline $b$-tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the $b$-tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, $b$-jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic $b$-hadron decays by selecting events with geometrically overlapping muons and jets.

7 citations


31 Aug 2021
TL;DR: In this paper, an exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson.
Abstract: The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from to 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.

Journal ArticleDOI
TL;DR: In this article, the authors used chip-scale light-emitting diode (LED) transmitters and single-photon avalanche diode receivers to achieve high data rate, high sensitivity communications for small satellite platforms.
Abstract: Small satellites have challenging size weight and power requirements for communications modules, which we address here by using chip-scale light-emitting diode (LED) transmitters and single-photon avalanche diode receivers. Data rates of 100 Mb/s have been demonstrated at a sensitivity of -55.2 dBm, and simulations with supporting experimental work indicate ranges in excess of 1 km are feasible with a directional gain of up to 52 dBi and comparatively modest pointing requirements. A 750 m, 20 Mb/s link using a single micro-LED has been demonstrated experimentally. The low electrical power requirements and compact, semiconductor nature of these devices offer high data rate, high sensitivity communications for small satellite platforms.

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional CMOS single-photon avalanche diode detector array was used to measure and monitor the interference of a free-space time-bin receiver interferometer while simultaneously tracking the spatial position of the singlephoton level signal.
Abstract: Experimental quantum key distribution through free-space channels requires accurate pointing-and-tracking to co-align telescopes for efficient transmission. The hardware requirements for the sender and receiver could be drastically reduced by combining the detection of quantum bits and spatial tracking signal using two-dimensional single-photon detector arrays. Here, we apply a two-dimensional CMOS single-photon avalanche diode detector array to measure and monitor the single-photon level interference of a free-space time-bin receiver interferometer while simultaneously tracking the spatial position of the single-photon level signal. We verify an angular field-of-view of 1.28° and demonstrate a post-processing technique to reduce background noise. The experimental results show a promising future for two-dimensional single-photon detectors in low-light level free-space communications, such as quantum communications.

Proceedings ArticleDOI
12 Apr 2021
TL;DR: In this paper, a Monte-Carlo algorithm was developed to transform the raw photon time-stamp stream coming from the SPAD array into a corrected virtual “photon” time-STamp stream devoid of the systematic measurement errors.
Abstract: A 128x192 SPAD array (QuantiCam) with an on-chip time-to-digital converter in each pixel is used as a camera in a single-photon time-resolved fluorescence microscope. The SPAD array introduces systematic nonlinearities and timing offset to the measured photon arrival times. This limits the fidelity of the experimental results. A Monte-Carlo algorithm was developed to transform the raw photon time-stamp stream coming from the SPAD array into a corrected virtual “photon” time-stamp stream devoid of the systematic measurement errors. This data is compatible with existing downstream data processing pipelines used in time-correlated single-photon counting. We discuss the calibration measurement, the algorithm, their performance and application to live fluorescence lifetime imaging of photosynthetic organisms.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a TCSPC Raman spectroscopy system based on a high peak power (>40W) pulsed laser, a high pulse repetition rate (40 MHz), a custom f/1.5 spectrometer, and a 512 spectral channel × 16 time bin single photon avalanche diode line sensor.
Abstract: Significant improvements in time-correlated single photon counting (TCSPC) Raman spectroscopy acquisition times can be achieved through exploitation of megahertz (MHz) laser repetition rates. We have developed a TCSPC Raman spectroscopy system based on a high peak power (>40W) pulsed laser, a high pulse repetition rate (40 MHz), a custom f/1.5 spectrometer, and a 512 spectral channel × 16 time bin single photon avalanche diode line sensor. We report millisecond Raman spectrum acquisition times, a peak Raman count rate of 104 kcps, and a linewidth aggregated count rate of 440 kcps with a diamond sample. This represents a three-order-of-magnitude increase in measured Raman count rate in comparison with a 104 kHz pulsed laser operating at 300 W and a four-order-of-magnitude increase over a 0.1 W pulsed laser operating at 40 MHz. A Raman-to-fluorescence ratio of 4.76 is achieved with a sesame oil sample at a 20 MHz repetition rate. Achieving high count rates and Raman-to-fluorescence ratios unlocks the potential of combined Raman/fluorescence lifetime spectroscopy for imaging and other short acquisition time applications.

03 May 2021
TL;DR: The ATLAS Level-1 topological trigger as mentioned in this paper uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, $\tau$-leptons, muons and the total energy.
Abstract: During LHC Run 2 (2015-2018) the ATLAS Level-1 topological trigger allowed efficient data-taking by the ATLAS experiment at luminosities up to 2.1x10$^{34}$ cm$^{-2}$s$^{-1}$, which exceeds the design value by a factor of two. The system was installed in 2016 and operated in 2017 and 2018. It uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, $\tau$-leptons, muons and the total energy. It significantly improves the background event rejection and signal event acceptance, in particular for Higgs boson and $B$-physics measurements.

19 Feb 2021
TL;DR: In this article, a new method to account for these additional interactions in the simulation chain is described, instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the interactions are presampled, independent of the hard scatter, and stored as combined events.
Abstract: The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton-proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run (2015-2018) there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.

19 Jul 2021
TL;DR: In this paper, a measurement of photon-pair production in proton-proton collisions at 13$ TeV was performed at the LHC with an integrated luminosity of 139 fb$^{-1}.
Abstract: A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

Proceedings ArticleDOI
05 Mar 2021
TL;DR: Initial results on processing data frames from the SPAD image sensor using convolutional neural networks are presented, with the view to localize and classify objects in the field of view, with low latency, and a classification accuracy of >90% is obtained.
Abstract: 3D-imaging is used in a wide range of applications such as robotics, computer interfaces, autonomous driving or even capturing the flight of birds. Current systems are often based on stereoscopy or structured light approaches, which impose limitations on standoff distance (range), and require textures in the scene or accurate projection patterns. Furthermore, there may be significant computational requirements for the generation of 3D maps. This work considers a system based on the alternative approach of time-of-flight. A state-of-the art single-photon avalanche diode (SPAD) image sensor is used in combination with pulsed, flood-type illumination. The sensor generates photon timing histograms in pixel, achieving a photon throughput of 100’s of Gigaphotons per second. This in turn enables the capture of 3D maps at frame rates >1kFPS, even in high ambient conditions and with minimal latency. We present initial results on processing data frames from the sensor (in the form of 64×32, 16-bin timing histograms, and 256×128 photon counts) using convolutional neural networks, with the view to localize and classify objects in the field of view, with low latency. In tests involving three different hand signs, with data frames acquired with millisecond exposures, a classification accuracy of >90% is obtained, with histogram-based classification consistently outperforming intensity based processing, despite the former’s relatively low lateral resolution. The total, GPU-assisted, processing time for detecting and classifying a sign is under 25 ms. We believe these results are relevant to robotics or self-driving cars, where fast perception, exceeding human reaction times is often desired.

20 Aug 2021
TL;DR: In this article, the energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $10
Abstract: The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $10

Proceedings ArticleDOI
12 Apr 2021
TL;DR: An advanced direct ToF SPAD imager with a 3D-stacked structure, integrating significant photon processing is considered, enabling high-speed object detection and classification in both indoor and outdoor environments.
Abstract: 3D sensing devices are becoming increasingly prevalent in robotics, self-driving cars, human-computer interfaces, as well as consumer electronics. Recent years have seen single-photon avalanche diodes (SPADs) emerging as one of the key technologies underlying 3D time-of-flight sensors, with the capability to capture accurate 3D depth maps in a range of environmental conditions, and with low computational overhead. In particular, direct ToF SPADs (dToF), which measure the return time of back-scattered laser pulses, form the backbone of many automotive LIDAR systems. We here consider an advanced direct ToF SPAD imager with a 3D-stacked structure, integrating significant photon processing. The device generates photon timing histograms in-pixel, resulting in a maximum throughput of 100's of giga photons per second. This advance enables 3D frames to be captured at rates in excess of 1000 frames per second, even under high ambient light levels. By exploiting the re-configurable nature of the sensor, higher resolution intensity (photon counting) data may be obtained in alternate frames, and depth upscaled accordingly. We present a compact SPAD camera based on the sensor, enabling high-speed object detection and classification in both indoor and outdoor environments. The results suggest a significant potential in applications requiring fast situational awareness.

16 Sep 2021
TL;DR: In this paper, the authors present the measurement of the electroweak production of two jets in association with a $Z\gamma$ pair with the Higgs boson decaying into two neutrinos.
Abstract: This paper presents the measurement of the electroweak production of two jets in association with a $Z\gamma$ pair with the $Z$ boson decaying into two neutrinos. It also presents the search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. For electroweak production of $Z\gamma$ in association with two jets, the background-only hypothesis is rejected with an observed (expected) significance of 5.2 (5.1) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. Observed (expected) upper limit of 0.37 (0.34) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson to a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 (0.017), assuming the 125 GeV Standard Model Higgs boson production cross-section.

25 Oct 2021
TL;DR: In this article, a measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 ρ-fb √ n −1 −1/ρ−1/ ρ −1 ) data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV.
Abstract: A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 $\mathrm{fb}^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic $t\bar{t}$ decay channel, and the hadronically decaying top quark must have transverse momentum above $350$ GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be $-0.043\pm0.020$, in agreement with the SM prediction of $-0.037\pm0.003$. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits.

13 Jul 2021
TL;DR: In this paper, a search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC.
Abstract: A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.

22 Jun 2021
TL;DR: In this article, a measurement of four-top-quark production using proton-proton collision data at a center-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$-1}$ is presented.
Abstract: A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

08 Nov 2021
TL;DR: In this article, a search for new spin-0 or spin-1 bosons using events where a Higgs boson with mass $125$ GeV decays into four leptons was conducted.
Abstract: Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass $125$ GeV decays into four leptons ($\ell =$$e$,$\mu$). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: $H \rightarrow XX/ZX \rightarrow 4\ell$, where the new boson $X$ has a mass between 1 and 60 GeV. The search uses $pp$ collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s}=13$ TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into $XX/ZX$, improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where $X$ is interpreted to be a dark boson.

01 Jul 2021
TL;DR: In this paper, a search with minimal model dependence for physics beyond the Standard Model in events featuring three or four leptons was presented, which aims to be sensitive to a wide range of potential new-physics theories simultaneously.
Abstract: A search with minimal model dependence for physics beyond the Standard Model in events featuring three or four leptons ($3\ell$ and $4\ell$, $\ell = e,\mu$) is presented. The analysis aims to be sensitive to a wide range of potential new-physics theories simultaneously. This analysis uses data from $pp$ collisions delivered by the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s} = 13$ TeV and recorded with the ATLAS detector, corresponding to the full Run 2 dataset of 139 fb$^{-1}$. The $3\ell$ and $4\ell$ phase space is divided into 22 event categories according to the number of leptons in the event, the missing transverse momentum, the invariant mass of the leptons, and the presence of leptons originating from a $Z$-boson candidate. These event categories are analysed independently for the presence of deviations from the Standard Model. No statistically significant deviations from the Standard Model predictions are observed. Upper limits for all signal regions are reported in terms of the visible cross-section.

29 Sep 2021
TL;DR: In this article, the results of two studies of Higgs boson properties using the $WW^*(rightarrow e u\mu u)jj$ final state, based on a dataset corresponding to 36.1/fb collisions recorded by the ATLAS experiment at the Large Hadron Collider, were presented.
Abstract: This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e u\mu u)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton-proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon-gluon fusion and constrains the CP properties of the effective Higgs-gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm \,0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.

06 Sep 2021
TL;DR: In this article, a search for the exotic decay of the Higgs boson into a missing transverse momentum (MV) resonance plus a pair of quarks was performed with the ATLAS detector at the Large Hadron Collider using 139 collisions at 13$ TeV.
Abstract: A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.

04 Oct 2021
TL;DR: In this paper, the authors presented a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, where one $a$-boson decays into a quark pair and the other into a muon pair.
Abstract: This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.