scispace - formally typeset
Search or ask a question

Showing papers in "Optics Letters in 2021"


Journal ArticleDOI
TL;DR: In this paper, a C-band wavelength-tunable microlaser with an Er3+-doped high quality (∼1.8×106) lithium niobate microdisk resonator was demonstrated.
Abstract: We demonstrate a C-band wavelength-tunable microlaser with an Er3+-doped high quality (∼1.8×106) lithium niobate microdisk resonator. With a 976 nm continuous-wave pump laser, lasing action can be observed at a pump power threshold lower than 400 µW at room temperature. Furthermore, the microdisk laser wavelength can be tuned by varying the pump laser power, showing a tuning efficiency of ∼-17.03pm/mW at low pump power below 13 mW, and 10.58 pm/mW at high pump power above 13 mW.

68 citations


Journal ArticleDOI
TL;DR: In this paper, an efficient and compact waveguide amplifier based on erbium-doped LNOI waveguides, achieved using a sequence of e ciented crystal growth, ion slicing, and lithography-based waveguide fabrication, is presented.
Abstract: Lithium niobate on insulator (LNOI) is an emerging photonic platform with great promise for use in future optical communications, nonlinear optics, and microwave photonics. An important integrated photonic building block, active waveguide amplifiers, however, are still missing in the LNOI platform. Here, we report an efficient and compact waveguide amplifier based on erbium-doped LNOI waveguides, achieved using a sequence of erbium-doped crystal growth, ion slicing, and lithography-based waveguide fabrication. Using a compact 5 mm long waveguide, we demonstrate an on-chip net gain of >5dB for 1530 nm signal light with a relatively low pump power of 21 mW at 980 nm. The efficient LNOI waveguide amplifiers could become an important fundamental element in future lithium niobate photonic integrated circuits.

65 citations


Journal ArticleDOI
TL;DR: In this paper, an autoencoder-based neural network was proposed to learn the latent encodings of phase-only holograms in an unsupervised manner, which can automatically generate high-fidelity 4K resolution holograms.
Abstract: Learning-based computer-generated holography (CGH) provides a rapid hologram generation approach for holographic displays. Supervised training requires a large-scale dataset with target images and corresponding holograms. We propose an autoencoder-based neural network (holoencoder) for phase-only hologram generation. Physical diffraction propagation was incorporated into the autoencoder's decoding part. The holoencoder can automatically learn the latent encodings of phase-only holograms in an unsupervised manner. The proposed holoencoder was able to generate high-fidelity 4K resolution holograms in 0.15 s. The reconstruction results validate the good generalizability of the holoencoder, and the experiments show fewer speckles in the reconstructed image compared with the existing CGH algorithms.

63 citations


Journal ArticleDOI
TL;DR: In this article, the electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm were carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively.
Abstract: The investigation of electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm was carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively. It was revealed that the LED chips with smaller mesa areas deliver considerably higher light output power density; meanwhile, they can sustain a higher current density, which is mainly attributed to the enhanced current spreading uniformity in micro-scale chips. Importantly, when the diameter of LED chips decreases from 300 µm to 20 µm, the peak external quantum efficiency (EQE) increases by 20%, and the EQE peak current density can be boosted from 8.85A/cm2 and 99.52A/cm2. Moreover, we observed a longer wavelength emission with enlarged full-width at half-maximum (FWHM) in the LEDs with smaller chip sizes because of the self-heating effect at high current injection. These experimental observations provide insights into the design and fabrication of high-efficiency micro-LEDs emitting in the DUV regime with different device geometries for various future applications.

60 citations


Journal ArticleDOI
TL;DR: In this article, the authors self-injection-lock a diode laser to a 1.41 m long, ultra-high Q integrated resonator, achieving a Lorentzian linewidth below 40 mHz.
Abstract: We self-injection-lock a diode laser to a 1.41 m long, ultra-high Q integrated resonator. The hybrid integrated laser reaches a frequency noise floor of 0.006Hz2/Hz at 4 MHz offset, corresponding to a Lorentzian linewidth below 40 mHz-a record among semiconductor lasers. It also exhibits exceptional stability at low-offset frequencies, with frequency noise of 200Hz2/Hz at 100 Hz offset. Such performance, realized in a system comprised entirely of integrated photonic chips, marks a milestone in the development of integrated photonics; and, for the first time, to the best of our knowledge, exceeds the frequency noise performance of commercially available, high-performance fiber lasers.

56 citations


Journal ArticleDOI
TL;DR: In this article, the effects of Fermi levels, structural parameters, and operation frequency on the tunable propagation properties of hybrid waveguides were investigated, and the results showed that if the operation frequency is smaller (larger) than the transition frequency (ℏω≈2|μc|), the proposed hybrid waveguide indicate strong (weak) confinement because the DSM layer manifests a high plasmonic low) loss property.
Abstract: Based on 3D Dirac-semimetal (DSM) modified hybrid waveguides, tunable propagation properties have been investigated, including the effects of Fermi levels, structural parameters, and operation frequency. The results show that if the operation frequency is smaller (larger) than the transition frequency (ℏω≈2|μc|), the proposed hybrid waveguides indicate strong (weak) confinement because the DSM layer manifests a high plasmonic (dielectric low) loss property. The dielectric fiber shape affects the propagation property obviously, as the elliptical parameter decreases, the confinement and figure of merit increase, and the loss reduces. With the increase in Fermi level, the propagation constant increases, and the frequency (amplitude) modulation depth is 32.31% (12.93%) if the Fermi level changes in the range of 0.01–0.15 eV. The results are very helpful in understanding the tunable mechanisms of hybrid waveguides and designing novel plasmonic devices in the future, e.g., modulators, filters, lasers, and resonators.

55 citations


Journal ArticleDOI
TL;DR: In this article, the first order helical Laguerre-Gaussian mode (also called donut mode) is used to improve the energy throughput of nonlinear spectral broadening in gas-filled multipass cells.
Abstract: The first-order helical Laguerre–Gaussian mode (also called donut mode) is used to improve the energy throughput of nonlinear spectral broadening in gas-filled multipass cells. The method proposed in this Letter enables, for the first time to the best of our knowledge, the nonlinear spectral broadening of pulses with energies beyond 100 mJ and is suitable for an average power of more than 500 W while conserving an excellent spatio-spectral homogeneity of ∼98% and a Gaussian-like focus profile. Additionally compressibility from 1.3 ps to 37 fs is demonstrated.

50 citations


Journal ArticleDOI
TL;DR: In this paper, a multi-pass laser beam pattern through the prong spacing of a quartz tuning fork (QTF) is obtained by means of two right-angle prisms.
Abstract: A multi-pass quartz-enhanced photoacoustic spectroscopy (MP-QEPAS)-based trace gas sensor is reported. In MP-QEPAS, a multi-pass laser beam pattern through the prong spacing of a quartz tuning fork (QTF) is obtained by means of two right-angle prisms. A large QTF with the prong length of 17 mm and prong spacing of 0.8 mm was employed to increase the passage of multi-pass time and ease the alignment of the beam reflection pattern through the QTF. This multi-pass configuration allows the laser beam to pass through the QTF prong spacing six times. Water vapor (H2O) was chosen as target gas to investigate the performance of the MP-QEPAS sensor. Compared to a conventional QEPAS measurement, the MP-QEPAS technique provided an enhancement of signal level of ∼3.2 times.

50 citations


Journal ArticleDOI
TL;DR: By employing high-performance nested anti-resonant nodeless fiber, this work demonstrates long-term stability in a hollow-fiber RFOG of 0.05 deg/h, nearing the levels required for civil aircraft navigation.
Abstract: Resonator fiber optic gyroscope (RFOG) performance has hitherto been limited by nonlinearity, modal impurity, and backscattering in the sensing fibers. The use of hollow-core fiber (HCF) effectively reduces nonlinearity, but the complex interplay among glass and air-guided modes in conventional HCF technologies can severely exacerbate RFOG instability. By employing high-performance nested anti-resonant nodeless fiber, we demonstrate long-term stability in a hollow-fiber RFOG of 0.05 deg/h, nearing the levels required for civil aircraft navigation. This represents a ${{3}} \times$ improvement over any prior hollow-core RFOG and a factor of ${{500}} \times$ over any prior result at integration times longer than 1 h.

47 citations


Journal ArticleDOI
TL;DR: In this paper, a single-quartzenhanced dual spectroscopy (S-QEDS)-based trace gas sensor is reported for the first time, to the best of our knowledge.
Abstract: A single-quartz-enhanced dual spectroscopy (S-QEDS)-based trace gas sensor is reported for the first time, to the best of our knowledge. In S-QEDS, a quartz tuning fork (QTF) was utilized to detect the photoacoustic and photothermal signals simultaneously and added the two signals together. The S-QEDS technique not only improved the detection performance but also avoided the issue of resonant frequency mismatching of QTFs for the multi-QTFs-based sensor systems. Water vapor (${\rm H}_2{\rm O}$) was selected as the target gas to investigate the S-QEDS sensor performance. The photoacoustic, photothermal, and composited signals were measured, respectively, under the same conditions. The experimental results verified the ideal adding of the photoacoustic and photothermal signals by using a single QTF in this S-QEDS sensor system.

46 citations


Journal ArticleDOI
TL;DR: In this paper, a multipass cell for nonlinear compression to few-cycle pulse duration is introduced composing dielectrically enhanced silver mirrors on silicon substrates, achieving high output beam quality (M2 < 1.2) and high spatio-spectral homogeneity (97.5%), as well as the compressibility of the output pulses to 6.9 fs duration.
Abstract: A multipass cell for nonlinear compression to few-cycle pulse duration is introduced composing dielectrically enhanced silver mirrors on silicon substrates. Spectral broadening with 388 W output average power and 776 µJ pulse energy is obtained at 82% cell transmission. A high output beam quality (M2<1.2) and a high spatio-spectral homogeneity (97.5%), as well as the compressibility of the output pulses to 6.9 fs duration, are demonstrated. A finite element analysis reveals scalability of this cell to 2 kW average output power.

Journal ArticleDOI
TL;DR: In this paper, an edge-coupling Mach-Zehnder modulator with low fiber-chip coupling loss of 0.5 dB/facet, half-wave voltage Vπ of 2.36 V, electro-optic (EO) bandwidth of 60 GHz and an efficient thermaloptic phase shifter with halfwave power of 6.24 mW is presented.
Abstract: Thin-film lithium-niobate-on-insulator (LNOI) is a very attractive platform for optical interconnect and nonlinear optics. It is essential to enable lithium niobate photonic integrated circuits with low power consumption. Here we present an edge-coupling Mach-Zehnder modulator on the platform with low fiber-chip coupling loss of 0.5 dB/facet, half-wave voltage Vπ of 2.36 V, electro-optic (EO) bandwidth of 60 GHz and an efficient thermal-optic phase shifter with half-wave power of 6.24 mW. In addition, we experimentally demonstrate single-lane 200 Gbit/s data transmission utilizing a discrete multi-tone signal. The LNOI modulator demonstrated here shows great potential in energy-efficient large-capacity optical interconnects.

Journal ArticleDOI
TL;DR: The nanophotonic phased array is excited by a supercontinuum laser source for a wide range of beam steering for the first time to the best of the authors' knowledge and paves the way to tune the wavelength from visible to near infrared range for silicon nitride nanophOTonic phased arrays.
Abstract: In this Letter, the broadband operation in wavelengths from 520 nm to 980 nm is demonstrated on silicon nitride nanophotonic phased arrays. The widest beam steering angle of 65° on a silicon nitride phased array is achieved. The optical radiation efficiency of the main grating lobe in a broad wavelength range is measured and analyzed theoretically. The optical spots radiated from the phased array chip are studied at different wavelengths of lasers. The nanophotonic phased array is excited by a supercontinuum laser source for a wide range of beam steering for the first time to the best of our knowledge. It paves the way to tune the wavelength from visible to near infrared range for silicon nitride nanophotonic phased arrays.

Journal ArticleDOI
Tongyu Huang1, Ruoyu Meng1, Ji Qi, Yudi Liu1, Xingjian Wang1, Yan Chen1, Ran Liao1, Hui Ma1 
TL;DR: The experimental results show that a dual division of focal plane (DoFP) polarimeters-based full Mueller matrix microscope has the potential to be a powerful tool for probing dynamic processes in living cells in future studies.
Abstract: In this Letter, we report a dual division of focal plane (DoFP) polarimeters-based full Mueller matrix microscope (DoFPs-MMM) for fast polarization imaging. Both acquisition speed and measurement accuracy are improved compared with those of a Mueller matrix microscope based on dual rotating retarders. Then, the system is applied to probe the polarization properties of a red blood cells smear. The experimental results show that a DoFPs-MMM has the potential to be a powerful tool for probing dynamic processes in living cells in future studies.

Journal ArticleDOI
TL;DR: In this paper, an on-chip single-mode microlaser with a low threshold fabricated on erbium doped lithium-niobate-on-insulator (LNOI) was reported.
Abstract: We report an on-chip single-mode microlaser with a low threshold fabricated on erbium doped lithium-niobate-on-insulator (LNOI). The single-mode laser emission at 1550.5 nm wavelength is generated in a coupled microdisk via the inverse Vernier effect at room temperature, when pumping the resonator at 977.7 nm wavelength. A threshold pump power as low as 200 μW is demonstrated due to the high quality factor above 106. Moreover, the measured linewidth of the microlaser reaches 348 kHz without discounting the broadening caused by the utilization of optical amplifiers, which is, to our knowledge, the best result in LNOI microlasers. Such a single-mode microlaser lithographically fabricated on chip is in high demand by the photonics community.

Journal ArticleDOI
TL;DR: In this article, a 3D printed shearing digital holographic microscope was used for rapid screening of red blood cells for active infection of COVID-19 using a compact and field-portable, 3D-printed shearing.
Abstract: Rapid screening of red blood cells for active infection of COVID-19 is presented using a compact and field-portable, 3D-printed shearing digital holographic microscope. Video holograms of thin blood smears are recorded, individual red blood cells are segmented for feature extraction, then a bi-directional long short-term memory network is used to classify between healthy and COVID positive red blood cells based on their spatiotemporal behavior. Individuals are then classified based on the simple majority of their cells' classifications. The proposed system may be beneficial for under-resourced healthcare systems. To the best of our knowledge, this is the first report of digital holographic microscopy for rapid screening of COVID-19.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the energy-scaling rules of hollow-core fiber (HCF)-based nonlinear pulse propagation and compression merged with high energy Yb-laser technology, in a regime where the effects such as plasma disturbance, optical damages, and setup size become important limiting parameters.
Abstract: In this Letter, we investigate the energy-scaling rules of hollow-core fiber (HCF)-based nonlinear pulse propagation and compression merged with high-energy Yb-laser technology, in a regime where the effects such as plasma disturbance, optical damages, and setup size become important limiting parameters. As a demonstration, 70 mJ 230 fs pulses from a high-energy Yb laser amplifier were compressed down to 40 mJ 25 fs by using a 2.8-m-long stretched HCF with a core diameter of 1 mm, resulting in a record peak power of 1.3 TW. This work presents a critical advance of a high-energy pulse (hundreds of mJ level) nonlinear interactions platform based on high energy sub-ps Yb technology with considerable applications, including driving intense THz, X-ray pulses, Wakefield acceleration, parametric wave mixing and ultraviolet generation, and tunable long-wavelength generation via enhanced Raman scattering.

Journal ArticleDOI
TL;DR: In this article, a high-speed ultraviolet-C (UVC) communication based on a 276.8 nm UVC micro-LED was achieved with an optical bandwidth of 452.53 MHz and light output power of 0.854 mW.
Abstract: In this Letter, we experimentally achieve high-speed ultraviolet-C (UVC) communication based on a 276.8 nm UVC micro-LED. A record ${-}{{3}}\;{\rm{dB}}$ optical bandwidth of 452.53 MHz and light output power of 0.854 mW at a current density of ${{400}}\;{\rm{A/c}}{{\rm{m}}^2}$ are obtained with a chip size of 100 µm. A UVC link over 0.5 m with a data rate of 2 Gbps is achieved using 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing and pre-equalization, and an extended distance over 3 m with a data rate of 0.82 Gbps is also presented. The demonstrated high-speed performance shows that micro-LEDs have great potential in the field of UVC communication.

Journal ArticleDOI
TL;DR: In this paper, the authors numerically demonstrate that high Q-factor resonances associated with symmetry-protected bound states in the continuum can lead to highly efficient frequency doubling in LN metasurfaces.
Abstract: Lithium niobate (LN) has been widely used for second-harmonic generation (SHG) from bulk crystals. Recent studies have reported improved SHG efficiency in LN micro-ring resonators and hybrid waveguiding structures, as well as in LN nanostructures supporting anapole modes and plasmon-assisted dipole resonances. Here we numerically demonstrate that high Q-factor resonances associated with symmetry-protected bound states in the continuum can lead to highly efficient frequency doubling in LN metasurfaces. Simulations show that the radiative Q-factor and on-resonance field enhancement factor observed in the metasurface are closely dependent on the asymmetric parameter α of the system. Furthermore, high Q-factor resonances boost the SH conversion process in the LN nanostructures. In particular, for a LN metasurface with a Q-factor of ∼8×104, a 0.49% peak SH conversion efficiency is achieved at a pump intensity of 3.3kW/cm2. This suggests that such high Q-factor LN metasurfaces may be good candidates for practical blue-ultraviolet light sources. Our work provides insight into the possible implementation of metadevices based on nanoengineering of conventional nonlinear crystals.

Journal ArticleDOI
TL;DR: A prototype of a lensless camera that uses a deep neural network (DNN) to realize rapid reconstruction for Fresnel zone aperture (FZA) imaging is presented, which could drastically reduce the design and assembly costs of cameras, paving the way for integration of portable sensors and systems.
Abstract: In mask-based lensless imaging, iterative reconstruction methods based on the geometric optics model produce artifacts and are computationally expensive. We present a prototype of a lensless camera that uses a deep neural network (DNN) to realize rapid reconstruction for Fresnel zone aperture (FZA) imaging. A deep back-projection network (DBPN) is connected behind a U-Net providing an error feedback mechanism, which realizes the self-correction of features to recover the image detail. A diffraction model generates the training data under conditions of broadband incoherent imaging. In the reconstructed results, blur caused by diffraction is shown to have been ameliorated, while the computing time is 2 orders of magnitude faster than the traditional iterative image reconstruction algorithms. This strategy could drastically reduce the design and assembly costs of cameras, paving the way for integration of portable sensors and systems.

Journal ArticleDOI
TL;DR: In this paper, the performance of InGaN-based red/green micro-light-emitting diodes (µLEDs) ranging from 98×98µm2 to 17×17 µm2 was investigated.
Abstract: We investigated the performance of InGaN-based red/green micro-light-emitting diodes (µLEDs) ranging from 98×98µm2 to 17×17µm2. The average forward voltage at 10A/cm2 was independent of the dimension of µLEDs. Red µLEDs exhibited a larger blueshift of the peak wavelength (∼35nm) and broader full-width at half maximum (≥50nm) at 2−50A/cm2 compared to green µLEDs. We demonstrated that 47×47µm2 red µLEDs had an on-wafer external quantum efficiency of 0.36% at the peak wavelength of 626 nm, close to the red primary color defined in the recommendation 2020 standard.

Journal ArticleDOI
TL;DR: In this article, a phase shifter with low power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC's iSiPP50G) attains (2.9π±π) phase shift at 1550 nm, with an insertion loss of (0.33−0.10+0.15)dB, a Vπ of (10.7−1.4+2.2)V, and an Lπ of 17.2−4.8)µm.
Abstract: Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-power and low-loss phase shifters in commercial foundries. Here, we demonstrate a compact phase shifter with low-power photonic microelectromechanical system (MEMS) actuation on a silicon photonics foundry platform (IMEC’s iSiPP50G). The device attains (2.9π±π) phase shift at 1550 nm, with an insertion loss of (0.33−0.10+0.15)dB, a Vπ of (10.7−1.4+2.2)V, and an Lπ of (17.2−4.3+8.8)µm. We also measured an actuation bandwidth f−3dB of 1.03 MHz in air. We believe that our demonstration of a low-loss and low-power photonic MEMS phase shifter implemented in silicon photonics foundry compatible technology lifts a main roadblock toward the scale-up of programmable photonic integrated circuits.

Journal ArticleDOI
TL;DR: In this paper, a radial cavity with (0,0,1) resonance mode was coupled with the quartz tuning fork (QTF) to greatly enhance the QEPAS signal and facilitate the optical alignment.
Abstract: Radial-cavity quartz-enhanced photoacoustic spectroscopy (RC-QEPAS) was proposed for trace gas analysis. A radial cavity with (0,0,1) resonance mode was coupled with the quartz tuning fork (QTF) to greatly enhance the QEPAS signal and facilitate the optical alignment. The coupled resonance enhancement effects of the radial cavity and QTF were analyzed theoretically and researched experimentally. With an optimized radial cavity, the detection sensitivity of QEPAS was enhanced by >1 order of magnitude. The RC-QEPAS makes the acoustic detection module more compact and optical alignment comparable with a bare QFT, benefiting the usage of light sources with poor beam quality.

Journal ArticleDOI
Abstract: We investigate the conversion efficiency (CE) of soliton modelocked Kerr frequency combs. Our analysis reveals three distinct scaling regimes of CE with the cavity free spectral range (FSR), which depends on the relative contributions of the coupling and propagation loss to the total cavity loss. Our measurements, for the case of critical coupling, verify our theoretical prediction over a range of FSRs and pump powers. Our numerical simulations also indicate that mode crossings have an adverse effect on the achievable CE. Our results indicate that microresonator combs operating with spacings in the electronically detectable regime are highly inefficient, which could have implications for integrated Kerr comb devices.

Journal ArticleDOI
TL;DR: In this paper, the synthetic gauge fields for photons provide a versatile approach to generate and control the non-Hermitian skin effect, which can be used in laser, optical switch, and signal processing.
Abstract: We show that the synthetic gauge fields for photons provide a versatile approach to generate and control the non-Hermitian skin effect. By utilizing indirectly coupled optical ring resonator arrays with long-range couplings and on-site gain and loss, we find that the skin effect appears once the gauge field is not an integer multiple of π. In addition to tunable localization direction, the skin modes display anisotropic behaviors with frequency-dependent decay length, which can be explained by the split subregion of the generalized Brillouin zone (GBZ) and an effective model under adiabatic elimination. Through numerical simulation, we can also demonstrate exotic features in propagation effects enabled by the skin effect, including asymmetric transmission and reconfigurable accumulation interface. Our study paves the way to dynamically steer skin modes, which may find applications in laser, optical switch, and signal processing.

Journal ArticleDOI
TL;DR: In this paper, a symmetric metasurface composed of single-sized amorphous-silicon cuboids tetramer clusters was proposed to support two resonances with opposite symmetry.
Abstract: In this Letter, we propose a symmetric metasurface composed of single-sized amorphous-silicon (a-Si) cuboids tetramer clusters that support two resonances with opposite symmetry, i.e., in-plane magnetic dipole (MD) resonance and in-plane toroidal dipole (TD) resonance governed by symmetry-protected bound states in the continuum (SP-BIC) in the near-infrared region. Since the cuboids tetramer of the metasurface retains C4v symmetry and mirror symmetry, both resonances are polarization independent. Multipolar decomposition of scattering power and electromagnetic distribution are performed to clarify the physical mechanism of dual quasi-BIC resonances. The effects of geometric parameters on both high-quality (Q) resonances are also studied. Additionally, the sensing performance of the designed metasurface is evaluated. The effects of the material’s loss on both resonances are also studied. Our work provides a new route to designing dual mode polarization- independent resonators without multi-sized complex structures that may facilitate designing high-performance sensing applications.

Journal ArticleDOI
TL;DR: In this paper, a pupil steerable see-through Maxwellian display incorporating cholesteric liquid crystal (CLC) holographic lenses is presented. But the method does not address the problem of the small eyebox, which results in serious aberrations.
Abstract: Maxwellian displays offer unique features like always-in-focus quality, high efficiency, and large field-of-view, but its small eyebox remains a major challenge for augmented reality. To enlarge the eyebox, pupil steering is a promising approach. However, previous pupil steering methods generally rely on changing the incident light angle on the lens coupler, which results in serious aberrations. In this Letter, we demonstrate a pupil steerable see-through Maxwellian display incorporating novel cholesteric liquid crystal (CLC) holographic lenses. By actively modulating the polarization state of the incident light, we can schematically choose which holographic lens to function, which fundamentally eliminates the aberrations.

Journal ArticleDOI
TL;DR: In this paper, a novel metasurface absorber integrated with periodic GST resonators was proposed and numerically demonstrated its capability in reconfiguration of the circular dichroism (CD) effect.
Abstract: Metasurfaces with tunable/switchable circular dichroism (CD) response have great potential to serve as important elements for plenty of advanced applications. In this work, we proposed a novel metasurface absorber integrated with periodic ${{\rm Ge}_2}{{\rm Sb}_2}{{\rm Te}_5}$ (GST) resonators and numerically demonstrated its capability in reconfiguration of the CD effect. Due to the strong chiral plasmonic resonance, a strong CD of about 0.75 can be achieved in a prescribed spectrum. Additionally, the phase transition of GST resonators enables the quasi-linearly modification of CD strength in a broad range (from 0.03 to 0.75). Furthermore, reversible chirality of the metasurface absorber can be realized by controlling the states of the left- and right-hand GST resonators separately, enabling the CD signal to be readily switched between on-, off-, and reverse-state.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas by using a control beam that is absorbed by the nanoresonator.
Abstract: We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

Journal ArticleDOI
TL;DR: In this paper, the authors performed a comprehensive investigation on the optical characterization of micro-sized DUV LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the chip sidewall angle.
Abstract: In this Letter, we perform a comprehensive investigation on the optical characterization of micro-sized deep-ultraviolet (DUV) LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the design of chip sidewall angle. We found that the micro-LEDs with a smaller inclined chip sidewall angle (∼33∘) have improved external quantum efficiency (EQE) performance 19% more than that of the micro-LEDs with a larger angle (∼75∘). Most importantly, the EQE improvement by adopting an inclined sidewall can be more outstanding as the diameter of the LED chip reduces from 40 to 20 μm. The enhanced EQE of the micro-LEDs with smaller inclined chip sidewall angles can be attributed to the stronger reflection of the inclined sidewall, leading to enhanced light extraction efficiency (LEE). In the end, the numerical optical modeling further reveals and verifies the impact of the sidewall angles on the LEE of the micro-LEDs, corroborating our experiment results. This Letter provides a fundamental understanding of the light extraction behavior with optimized chip geometry to design and fabricate highly efficient micro-LEDs in a DUV spectrum of the future.