scispace - formally typeset
Search or ask a question

Showing papers by "Robert K. Jansen published in 2015"


Journal ArticleDOI
TL;DR: Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage, and comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT.
Abstract: Summary The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution.

78 citations



Journal ArticleDOI
TL;DR: The phylogenetic distribution of this gene loss/transfer and the high level of sequence similarity in transit peptides suggest a single transfer of the plastid-encoded rpl32 to the nucleus in the ancestor of the subfamily Thalictroideae approximately 20–32 Mya.
Abstract: Plastids originated from cyanobacteria and the majority of the ancestral genes were lost or functionally transferred to the nucleus after endosymbiosis. Comparative genomic investigations have shown that gene transfer from plastids to the nucleus is an ongoing evolutionary process but molecular evidence for recent functional gene transfers among seed plants have only been documented for the four genes accD, infA, rpl22, and rpl32. The complete plastid genome of Thalictrum coreanum, the first from the subfamily Thalictroideae (Ranunculaceae), was sequenced and revealed the losses of two genes, infA and rpl32. The functional transfer of these two genes to the nucleus in Thalictrum was verified by examination of nuclear transcriptomes. A survey of the phylogenetic distribution of the rpl32 loss was performed using 17 species of Thalictrum and representatives of related genera in the subfamily Thalictroideae. The plastid-encoded rpl32 gene is likely nonfunctional in members of the subfamily Thalictroideae (Aquilegia, Enemion, Isopyrum, Leptopyrum, Paraquilegia, and Semiaquilegia) including 17 Thalictrum species due to the presence of indels that disrupt the reading frame. A nuclear-encoded rpl32 with high sequence identity was identified in both Thalictrum and Aquilegia. The phylogenetic distribution of this gene loss/transfer and the high level of sequence similarity in transit peptides suggest a single transfer of the plastid-encoded rpl32 to the nucleus in the ancestor of the subfamily Thalictroideae approximately 20–32 Mya. The genome sequence of Thalictrum coreanum provides valuable information for improving the understanding of the evolution of plastid genomes within Ranunculaceae and across angiosperms. Thalictrum is unusual among the three sequenced Ranunculaceae plastid genomes in the loss of two genes infA and rpl32, which have been functionally transferred to the nucleus. In the case of rpl32 this represents the third documented independent transfer from the plastid to the nucleus with the other two transfers occurring in the unrelated angiosperm families Rhizophoraceae and Salicaceae. Furthermore, the transfer of rpl32 provides additional molecular evidence for the monophyly of the subfamily Thalictroideae.

61 citations



Journal ArticleDOI
06 Oct 2015-PLOS ONE
TL;DR: The results expand the current understanding of metabolomics diversity in diatoms and confirm their potential value for producing lipids for either bioenergy or as feed stock.
Abstract: Diatoms are very efficient in their use of available nutrients. Changes in nutrient availability influence the metabolism and the composition of the cell constituents. Since diatoms are valuable candidates to search for oil producing algae, measurements of diatom-produced compounds can be very useful for biotechnology. In order to explore the diversity of lipophilic compounds produced by diatoms, we describe the results from an analysis of 13 diatom strains. With the help of a lipidomics platform, which combines an UPLC separation with a high resolution/high mass accuracy mass spectrometer, we were able to measure and annotate 142 lipid species. Out of these, 32 were present in all 13 cultures. The annotated lipid features belong to six classes of glycerolipids. The data obtained from the measurements were used to create lipidomic profiles. The metabolomic overview of analysed cultures is amended by the measurement of 96 polar compounds. To further increase the lipid diversity and gain insight into metabolomic adaptation to nitrogen limitation, diatoms were cultured in media with high and low concentrations of nitrate. The growth in nitrogen-deplete or nitrogen-replete conditions affects metabolite accumulation but has no major influence on the species-specific metabolomic profile. Thus, the genetic component is stronger in determining metabolic patterns than nitrogen levels. Therefore, lipid profiling is powerful enough to be used as a molecular fingerprint for diatom cultures. Furthermore, an increase of triacylglycerol (TAG) accumulation was observed in low nitrogen samples, although this trend was not consistent across all 13 diatom strains. Overall, our results expand the current understanding of metabolomics diversity in diatoms and confirm their potential value for producing lipids for either bioenergy or as feed stock.

43 citations