scispace - formally typeset
Search or ask a question

Showing papers by "Samuel Aparicio published in 1994"


Journal ArticleDOI
18 Aug 1994-Nature
TL;DR: Two enhancers, 3′ of the mouse Hoxb-1 gene, are identified, which together reconstruct the early endogenous expression pattern and mediate the early ectopic response to retinoic acid.
Abstract: WITHIN the Hoxb homeobox gene complex, Hoxb-1 is the earliest member expressed in the mesoderm and neuroectoderm of primitive streak and presomite embryos, preceding rhombomere-restricted expression in the hind brain1–7. Ectopic exposure of embryos to retinoic acid alters spatial aspects of Hox gene expression patterns8–15. However, the role of retinoids in regulating these genes during normal development is unclear. We have now identified two enhancers, 3′ of the mouse Hoxb-1 gene, which together reconstruct the early endogenous expression pattern and mediate the early ectopic response to retinoic acid. Furthermore, these regions are functionally conserved in both chicken and pufferfish (Fugu rubripes)16 Hoxb-1 genes. The enhancer that controls the retinoic acid response, and regulates expression predominantly in neuroectoderm, contains a retinoic acid response element (RARE). Point mutations in the RARE abolish expression in neuroectoderm. Therefore, this RARE is not only involved in the ectopic response to retinoic acid, but is also essential for establishing aspects of the early Hoxb-l expression pattern.

461 citations


Journal ArticleDOI
TL;DR: Models of the N domains of HGF/SF, HGF1/MSP, and plasminogen, characterized by the presence of 4 conserved Cys residues forming a loop in a loop, have been modeled based on disulfide‐bond constraints and suggest a mechanism for the formation of a noncovalent H GF/SF homodimer that may be responsible for the activation of the Met receptor.
Abstract: Plasminogen-related growth factors, a new family of polypeptide growth factors with the basic domain organization and mechanism of activation of the blood proteinase plasminogen, include hepatocyte growth factor/scatter factor (HGF/SF), a potent effector of the growth, movement, and differentiation of epithelia and endothelia, and hepatocyte growth factor-like/macrophage stimulating protein (HGF1/MSP), an effector of macrophage chemotaxis and phagocytosis. Phylogeny of the serine proteinase domains and analysis of intron-exon boundaries and kringle sequences indicate that HGF/SF, HGF1/MSP, plasminogen, and apolipoprotein (a) have evolved from a common ancestral gene that consisted of an N-terminal domain corresponding to plasminogen activation peptide (PAP), 3 copies of the kringle domain, and a serine proteinase domain. Models of the N domains of HGF/SF, HGF1/MSP, and plasminogen, characterized by the presence of 4 conserved Cys residues forming a loop in a loop, have been modeled based on disulfide-bond constraints. There is a distinct pattern of charged and hydrophobic residues in the helix-strand-helix motif proposed for the PAP domain of HGF/SF; these may be important for receptor interaction. Three-dimensional structures of the 4 kringle and the serine proteinase domains of HGF/SF were constructed by comparative modeling using the suite of programs COMPOSER and were energy minimized. Docking of a lysine analogue indicates a putative lysine-binding pocket within kringle 2 (and possibly another in kringle 4). The models suggest a mechanism for the formation of a noncovalent HGF/SF homodimer that may be responsible for the activation of the Met receptor. These data provide evidence for the divergent evolution and structural similarity of plasminogen, HGF/SF, and HGF1/MSP, and highlight a new strategy for growth factor evolution, namely the adaptation of a proteolytic enzyme to a role in receptor activation.

183 citations