scispace - formally typeset
Search or ask a question

Showing papers by "Seongwon Seo published in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors collected information about wearable wireless sensor systems for cattle and conducted a systematic literature review on the accuracy of predicting the physiological parameters of these systems, including correlation, sensitivity, and specificity.
Abstract: The review aimed to collect information about the wearable wireless sensor system (WWSS) for cattle and to conduct a systematic literature review on the accuracy of predicting the physiological parameters of these systems. The WWSS was categorized as an ear tag, halter, neck collar, rumen bolus, leg tag, tail-mounted, and vaginal mounted types. Information was collected from a web-based search on Google, then manually curated. We found about 60 WWSSs available in the market; most sensors included an accelerometer. The literature evaluating the WWSS performance was collected through a keyword search in Scopus. Among the 1875 articles identified, 46 documents that met our criteria were selected for further meta-analysis. Meta-analysis was conducted on the performance values (e.g., correlation, sensitivity, and specificity) for physiological parameters (e.g., feeding, activity, and rumen conditions). The WWSS showed high performance in most parameters, although some parameters (e.g., drinking time) need to be improved, and considerable heterogeneity of performance levels was observed under various conditions (average I2 = 76%). Nevertheless, some of the literature provided insufficient information on evaluation criteria, including experimental conditions and gold standards, to confirm the reliability of the reported performance. Therefore, guidelines for the evaluation criteria for studies evaluating WWSS performance should be drawn up.

16 citations


Journal ArticleDOI
TL;DR: It is concluded that the digestibility and energy value of corn flakes are lower than those of ground corn if mastication does not sufficiently reduce the particle size ofcorn flakes.
Abstract: In this study, we aimed to assess the effect of flaking on the nutrient digestibility of corn grain in ruminants. In this regard, in vitro rumen fermentation, in situ rumen degradability, and in vivo metabolic experiments were performed. The automated gas production technique was used for the in vitro fermentation experiments. Six types of corn flakes with various degrees of gelatinization (32%, 41%, 48%, 66%, 86%, and 89%) were ground and incubated in rumen fluid to measure rumen fermentation characteristics and digestion rate. The in situ degradability of ground corn, whole corn, and corn flakes with 62% and 66% gelatinization was measured by incubation in the rumen of two cannulated Holstein cows. In vivo metabolic experiments were performed using 12 crossbred goats (29.8 ± 4.37 kg) using a 3 × 3 Latin square design. The dietary treatments consisted of ground corn and flaked corn with 48% or 62% gelatinization. In vitro experiments showed that as the degree of gelatinization increased, the digestion rate increased linearly, while the discrete lag time decreased linearly (p 0.05); however, the crude fat digestibility was lower for corn flakes than for ground corn (p < 0.05). To summarize, the rate of fermentation of corn flakes increased as the degree of gelatinization increased. However, non-ground corn flakes had lower rumen digestibility and did not improve in vivo apparent nutrient digestibility, compared with ground corn. In contrast to the assumption that flaked corn provides more energy to ruminant animals than ground corn, we conclude that the digestibility and energy value of corn flakes are lower than those of ground corn if mastication does not sufficiently reduce the particle size of corn flakes.

4 citations


Journal ArticleDOI
27 Jan 2021-PLOS ONE
TL;DR: In this paper, the authors compared the effects of two methionine isoforms, L-methionine (L-Met) or D-met (D-Met), on transcriptome expression in broiler chickens under acute heat stress.
Abstract: The objective of this study was to compare the effects of supplementation with two methionine isoforms, L-methionine (L-Met) or D-methionine (D-Met), on transcriptome expression in broiler chickens under acute heat stress. A total of 240 one-day-old chicks were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement: thermo-neutral vs. acute heat-stress and L-Met vs. D-Met supplementation. On day 14, the heat-stressed group was exposed to 32°C for 5 h, while the others remained at 25°C. Six chicks were randomly selected per treatment and total RNA was isolated from whole blood, ileum, and liver tissues. Two RNA samples from each tissue of each treatment group were randomly selected and pooled in equal amounts. A total of 1.87 billion raw reads obtained from 36 samples (four treatments × three tissues × three composited replicates) were mapped to the reference genome build (Gallus_gallus-5.0) and used to identify differentially expressed genes (DEGs) using DESeq2. Functional enrichment of DEGs was tested using DAVID. Comparing the two isoforms of supplemented methionine, two, three, and ten genes were differentially expressed (> 1 or < -1 log2 fold change) in whole blood, ileum, and liver, respectively. A total of 38, 71, and 16 genes were differentially expressed in response to the interaction between heat stress and Met isoforms in the blood, ileum, and liver, respectively. Three-tissue-specific DEGs were functionally enriched for regulation of cholesterol homeostasis and metabolism, glucose metabolism, and vascular patterning. Chicks fed with L-Met had lower immune (e.g., IL4I1 and SERPINI1) and intestinal angiogenic responses (e.g., FLT1 and FGD5), and stable glucose and lipid metabolism (e.g., PCK1 and LDLR) under heat stress conditions. In conclusion, unlike D-Met, L-Met supplementation seems to help maintain physiological homeostasis and enhances cellular defense systems against external stresses like high environmental temperature.

3 citations


Journal ArticleDOI
04 Jan 2021
TL;DR: In this article, the authors investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance.
Abstract: S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry.

3 citations


Journal ArticleDOI
TL;DR: In this paper, a meta-analysis was conducted with 306 means from 69 studies containing both dietary DE and ME concentrations measured by calorimetry to test whether exclusion of the y-intercept is adequate in the linear relationship between ME and DE and develop a model equation to predict MDR in beef cattle.
Abstract: Understanding the utilization of feed energy is essential for precision feeding in beef cattle production. We aimed to assess whether predicting the metabolizable energy (ME) to digestible energy (DE) ratio (MDR), rather than a prediction of ME with DE, is feasible and to develop a model equation to predict MDR in beef cattle. We constructed a literature database based on published data. A meta-analysis was conducted with 306 means from 69 studies containing both dietary DE and ME concentrations measured by calorimetry to test whether exclusion of the y-intercept is adequate in the linear relationship between DE and ME. A random coefficient model with study as the random variable was used to develop equations to predict MDR in growing and finishing beef cattle. Routinely measured or calculated variables in the field (body weight, age, daily gain, intake, and dietary nutrient components) were chosen as explanatory variables. The developed equations were evaluated with other published equations. The no-intercept linear equation was found to represent the relationship between DE and ME more appropriately than the equation with a y-intercept. The y-intercept (-0.025 ± 0.0525) was not different from 0 (P = 0.638), and Akaike and Bayesian information criteria of the no-intercept model were smaller than those with the y-intercept. Within our growing and finishing cattle data, the animal's physiological stage was not a significant variable affecting MDR after accounting for the study effect (P = 0.213). The mean (±SE) of MDR was 0.849 (±0.0063). The best equation for predicting MDR (n = 106 from 28 studies) was 0.9410 ( ± 0.02160) +0.0042 ( ± 0.00186) × DMI (kg) - 0.0017 ( ± 0.00024) × NDF(% DM) - 0.0022 ( ± 0.00084) × CP(% DM). We also presented a model with a positive coefficient for the ether extract (n = 80 from 22 studies). When using these equations, the observed ME was predicted with high precision (R2 = 0.92). The model accuracy was also high, as shown by the high concordance correlation coefficient (>0.95) and small root mean square error of prediction (RMSEP), 93%), without mean or slope bias (P > 0.05). We concluded that dietary ME in beef cattle could be accurately estimated from dietary DE and its conversion factor, MDR, predicted by the dry matter intake and concentration of several dietary nutrients, using the 2 equations developed in this study.

3 citations


Journal ArticleDOI
TL;DR: The KFSD DMI model is suitable for predicting the DMI of lactating dairy cows in practical situations in Korea and is the most sensitive to FCM, followed by MBW and NDF.
Abstract: OBJECTIVE This study aimed to validate and evaluate the dry matter (DM) intake prediction model of the Korean feeding standards for dairy cattle (KFSD). METHODS The KFSD DM intake (DMI) model was developed using a database containing the data from the Journal of Dairy Science from 2006 to 2011 (1,065 observations 287 studies). The development (458 observations from 103 studies) and evaluation databases (168 observations from 74 studies) were constructed from the database. The body weight (kg; BW), metabolic BW (BW0.75, MBW), 4% fat-corrected milk (FCM), forage as a percentage of dietary DM, and the dietary content of nutrients (% DM) were chosen as possible explanatory variables. A random coefficient model with the study as a random variable and a linear model without the random effect was used to select model variables and estimate parameters, respectively, during the model development. The best-fit equation was compared to published equations, and sensitivity analysis of the prediction equation was conducted. The KFSD model was also evaluated using in vivo feeding trial data. RESULTS The KFSD DMI equation is 4.103 (±2.994)+0.112 (±0.022)×MBW+0.284 (±0.020) ×FCM-0.119 (±0.028)×neutral detergent fiber (NDF), explaining 47% of the variation in the evaluation dataset with no mean nor slope bias (p>0.05). The root mean square prediction error was 2.70 kg/d, best among the tested equations. The sensitivity analysis showed that the model is the most sensitive to FCM, followed by MBW and NDF. With the in vivo data, the KFSD equation showed slightly higher precision (R2 = 0.39) than the NRC equation (R2 = 0.37), with a mean bias of 1.19 kg and no slope bias (p>0.05). CONCLUSION The KFSD DMI model is suitable for predicting the DMI of lactating dairy cows in practical situations in Korea.

2 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the effects of dietary supplementation with bacteriophage and β-mannanase on health and growth performance in calves, and concluded that bacterophage supplementation may have a positive effect on calf survival rate, while β-manganase supplementation may increase the growth rate and starter intake by calves just before and after weaning.
Abstract: The objective of this study was to evaluate the effects of dietary supplementation with bacteriophage and β-mannanase on health and growth performance in calves. Thirty-six pre-weaning male Holstein calves were randomly allocated to one of four dietary treatments with a 2 × 2 factorial arrangement: no supplementation, 0.1% β-mannanase, 0.1% bacteriophage, and both 0.1% bacteriophage and 0.1% β-mannanase supplementation in a starter on a dry matter basis. The experiment lasted from 2 weeks before weaning to 8 weeks after weaning. Twenty-two calves survived to the end of the experiment. No interaction was observed between the two different feed additives. The bacteriophage supplementation tended to increase the odds ratio of survival (p = 0.09). The number of Escherichia coli in feces significantly decreased by bacteriophage supplementation one week after weaning. β-mannanase supplementation increased the concentrate intake (p < 0.01) and tended to increase the final BW (p = 0.08). Analysis of repeated measures indicated β-mannanase supplementation increased weekly body weight gain (p = 0.018). We conclude that bacteriophage supplementation may have a positive effect on calf survival rate, while β-mannanase supplementation may increase the growth rate and starter intake by calves just before and after weaning.

1 citations


Journal ArticleDOI
TL;DR: In this paper, a study was conducted to test whether a high dietary crude protein level would improve growth performance, body metabolism, and carcass traits in Hanwoo beef cattle.
Abstract: Recently, a high level of dietary crude protein (CP) has become of interest as a possible practice to improve the carcass quality of beef cattle, and its level has been increasing in the field. However, there is little scientific evidence that supports this. This study was conducted to test whether a high dietary CP level would improve growth performance, body metabolism, and carcass traits in Hanwoo beef cattle. A total of 32 Hanwoo finishing beef cattle (18 multiparous cows, six heifers, and eight steers) participated in a 12-weeks feeding trial. Two kinds of total mixed rations were prepared to contain two different CP; 156 g/kg for the control (CON) and 173 g/kg of CP for the treatment (HCP), while maintaining a similar level of metabolizable energy. The experiment was ended when more than half of the steers reached the target body weight (730 kg). Blood was collected at the end of the experiment. After harvesting, the carcass trait was evaluated at the slaughterhouse according to Korean standards. The carcass yield score and grade were also calculated based on revised criteria. Overall, dry matter intake, average daily gain, blood metabolites concentration, and the carcass traits, except for backfat thickness and the yield score, did not differ between the treatments. The HCP had lower backfat thickness than those of CON. There was no difference in the carcass yield grade, but the yield score was higher in the HCP treatment. According to the newly revised carcass grading criteria, both yield score and grade were higher in HCP than in CON. Increasing CP supply decreased the carcass's backfat thickness without altering growth performance and body metabolism, resulting in improved yield score and grade. Therefore, feeding a high CP diet may be beneficial in the farm income, although it may also increase feed cost and nitrogen excretion to the environment.

1 citations