scispace - formally typeset
Search or ask a question
Author

Shmuel Link

Bio: Shmuel Link is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Flame spread & Limiting oxygen concentration. The author has an hindex of 4, co-authored 5 publications receiving 75 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 2019
TL;DR: In this article, the authors identify the transition from opposed flame spread to fuel regression under varying conditions, including sample size, opposed flow velocity, pressure, oxygen concentration, external radiation, and gravity level.
Abstract: The spread of flames over the surface of solid combustible material in an opposed flow is different from the mass burning (or fuel regression) in a pool fire. However, the progress of a flame front over a solid fuel includes both flame spread and fuel regression, but the difference between these two processes has not been well clarified. In this work, experiments using cylindrical PMMA samples were conducted in normal gravity and in microgravity. We aim to identify the transition from opposed flame spread to fuel regression under varying conditions, including sample size, opposed flow velocity, pressure, oxygen concentration, external radiation, and gravity level. For a thick rod in normal gravity, as the opposed flow increases to 50–100 cm/s, the flame can no longer spread over the fuel surface but stay in the recirculation zone downstream of the cylinder end surface, like a pool fire flame. The flame spread first transitions to fuel regression at a critical leading-edge regression angle of α ≈ 45°, and then, flame blow-off occurs. Under large opposed flow velocity, a stable flat blue flame is formed floating above the rod end surface, because of vortex shedding. In microgravity at a low opposed flow (

30 citations

Journal ArticleDOI
TL;DR: It is suggested that under certain environmental conditions there could be a higher fire risk and a more difficult fire suppression in microgravity than on Earth, which would have significant implications for spacecraft fire safety.
Abstract: Fire safety is a concern in space travel, particularly with the current plans of increasing the length of the manned space missions, and of using spacecraft atmospheres different than in Earth, such as microgravity, low-velocity gas flow, low pressure and elevated oxygen concentration. In this work, the spread of flame over a thermoplastic polymer, polymethyl methacrylate (PMMA), was conducted in the International Space Station and on Earth. The tests consisted of determining the opposed flame spread rate over PMMA cylinders under low-flow velocities ranging from 0.4 to 8 cm/s and oxygen concentrations from 15% to 21%. The data show that as the opposed flow velocity is increased, the flame spread rate first increases, and then decreases, different from that on Earth. The unique data are significant because they have only been predicted theoretically but not been observed experimentally before. Results also show that flame spread in microgravity could be faster and sustained at lower oxygen concentration (17%) than in normal gravity (18%). These findings suggest that under certain environmental conditions there could be a higher fire risk and a more difficult fire suppression in microgravity than on Earth, which would have significant implications for spacecraft fire safety.

30 citations

10 Jul 2016
TL;DR: In this article, the spread of flame over a thermoplastic polymer, polymethyl methacrylate (PMMA), was conducted in the International Space Station and on Earth.
Abstract: Fire safety is a concern in space travel, particularly with the current plans of increasing the length of the manned space missions, and of using spacecraft atmospheres different than in Earth, such as microgravity, low-velocity gas flow, low pressure and elevated oxygen concentration. In this work, the spread of flame over a thermoplastic polymer, polymethyl methacrylate (PMMA), was conducted in the International Space Station and on Earth. The tests consisted of determining the opposed flame spread rate over PMMA cylinders under low-flow velocities ranging from 0.4 to 8 cm/s and oxygen concentrations from 15% to 21%. The data show that as the opposed flow velocity is increased, the flame spread rate first increases, and then decreases, different from that on Earth. The unique data are significant because they have only been predicted theoretically but not been observed experimentally before. Results also show that flame spread in microgravity could be faster and sustained at lower oxygen concentration (17%) than in normal gravity (18%). These findings suggest that under certain environmental conditions there could be a higher fire risk and a more difficult fire suppression in microgravity than on Earth, which would have significant implications for spacecraft fire safety.

21 citations

12 Jul 2015
TL;DR: In this article, the authors developed a perfectly stirred reactor model to determine the N2 flow time and flow rate to obtain the desired reduced oxygen concentration in the working volume for each test.
Abstract: For the first time on ISS, BASS-II utilized MSG working volume dilution with gaseous nitrogen (N2). We developed a perfectly stirred reactor model to determine the N2 flow time and flow rate to obtain the desired reduced oxygen concentration in the working volume for each test. We calibrated the model with CSA-CP oxygen readings offset using the Mass Constituents Analyzer reading of the ISS ambient atmosphere data for that day. This worked out extremely well for operations, and added a new vital variable, ambient oxygen level, to our test matrices. The main variables tested in BASS-II were ambient oxygen concentration, ventilation flow velocity, and fuel type, thickness, and geometry. BASS-II also utilized the on-board CSA-CP for oxygen and carbon monoxide readings, and the CDM for carbon dioxide readings before and after each test. Readings from these sensors allow us to evaluate the completeness of the combustion. The oxygen and carbon dioxide readings before and after each test were analyzed and compared very well to stoichiometric ratios for a one step gas-phase reaction. The CO versus CO2 followed a linear trend for some datasets, but not for all the different geometries of fuel and flow tested. Lastly, we calculated the heat release rates during each test from the oxygen consumption and burn times, using the constant 13.1 kJ of heat released per gram of oxygen consumed. The results showed that the majority of the tests had heat release rates well below 100 Watts.

11 citations

Journal ArticleDOI
TL;DR: In this paper, a new treatment of pressure boundary conditions for the DSMC method is proposed for flow prediction in microchannels, which shows better convergence compared with previous boundary treatments.
Abstract: A new treatment of pressure boundary conditions for the DSMC method is proposed for flow prediction in microchannels. Validity and accuracy of the new method are verified by comparing to the analytical solutions of the micro-Poiseuille flow under slip condition. The new method shows better convergence compared with previous boundary treatments. This advantage becomes more remarkable as the geometry of the microchannel becomes more complex. A study on a microchannel with sudden expansion is demonstrated using the new DSMC method. Wall temperature in the expanded region of the microchannel independently varies from 200 to 800 K to study the effects on the pressure distribution, velocity, mass flow rate, and heat flux of the microchannel flow. The results show that the wall temperature in the expanded region significantly affects the microchannel flow. Some unique phenomena are observed to be quite different from those of the macroscopic flow and the mechanism of these interesting phenomena is discussed.

4 citations


Cited by
More filters
01 Jan 2003
TL;DR: In this article, the authors proposed a method for determining the heat release rate of a fire using the reduction of oxygen in fire exhaust gases as an indicator of the amount of heat released by the burning test specimens.
Abstract: Intuitively, the rate of heat release from an unwanted fire is a major indication of the threat of the fire to life and property. This is indeed true, and a reliable measurement of a fire’s heat release rate was a goal of fire researchers at NBS and other fire laboratories at least as early as the 1960s. Historically, heat release measurements of burning materials were based on the temperature rise of ambient air as it passed over the burning object. Because the fraction of heat released by radiant emission varies with the type of material being burned, and because not all the radiant energy contributes to temperature rise of the air, there were large errors in the measurements. Attempts to account for the heat that was not captured by the air required siting numerous thermal sensors about the fire to intercept and detect the additional heat. This approach proved to be tedious, expensive, and susceptible to large errors, particularly when the burning “object” was large, such as a full-sized room filled with flammable furnishings and surface finishes. A novel alternative technique for determining heat release rate was developed at NBS during the 1970s. It had distinct advantages over the customary approach, but its widespread acceptance was hampered by uneasiness in the fire science community concerning potential errors if the technique were used in less-than-ideal circumstances. In 1980 Clayton Huggett, a fire scientist at NBS, published the seminal paper [1] that convinced the fire science community that the new technique was scientifically sound and sufficiently accurate for fire research and testing. The technique is now used worldwide and forms the basis for several national and international standards. The underlying principle of the new heat release rate technique was “discovered” in the early 1970s. Faced with the challenge of measuring the heat release of combustible wall linings during full-scale room fire tests, William Parker, Huggett’s colleague at NBS, investigated an alternative approach based on a simple fact of physics: in addition to the release of heat, the combustion process consumes oxygen. As part of his work on the ASTM E 84 tunnel test, Parker [2] explored the possibility of using a measurement of the reduction of oxygen in fire exhaust gases as an indicator of the amount of heat released by the burning test specimens. Indeed, for well-defined materials with known chemical composition, heat release and oxygen consumption can both be calculated from thermodynamic data. The problem with applying this approach to fires is that in most cases the chemical compositions of modern materials/ composites/mixes that are likely to be involved in real fires are not known. In the process of examining data for complete combustion (combustion under stoichiometric or excess air conditions) of the polymeric materials with which he was working, Parker found that, although the heat released per unit mass of material consumed (i.e., the specific heat of combustion), varied greatly, the amount of heat released per unit volume of oxygen consumed was fairly constant, i.e., within 15 % of the value for methane, 16.4 MJ/m of oxygen consumed. This fortunate circumstance—that the heat release rate per unit volume of oxygen consumed is approximately the same for a range of materials used to construct buildings and furnishings—meant that the heat release rate of materials commonly found in fires could be estimated by capturing all of the products of combustion in an exhaust hood and measuring the flow rate of oxygen in that exhaust flow. The technique was dubbed oxygen consumption calorimetry, notwithstanding the absence of any actual calorimetric (heat) measurements. Later in the decade, Huggett [1] performed a detailed analysis of the critical assumption of constant proportionality of oxygen consumption to heat release. Parker’s assumption was based on enthalpy calculations for the complete combustion of chemical compounds to carbon dioxide, water, and other fully oxidized compounds. Indeed, a literature review by Huggett revealed that Parker’s findings were actually a rediscovery and extension of the work of W. M. Thornton [3], published in 1917, which found that the heat released per unit amount of oxygen consumed during the complete combustion of a large number of organic gases and liquids was fairly constant. Nevertheless, since in real fires and fire experiments the oxygen supply is sometimes limited, incomplete combustion and partially oxidized products can be produced. Huggett’s paper examined in detail the assumption of constant heat release per amount of oxygen consumed under real fire conditions and assessed its effect on the accuracy of heat release rate determinations for fires. Instead of expressing results on a unit volume basis, as Parker did, Huggett expressed results in the more convenient and less ambiguous unit mass of oxygen

258 citations

Journal ArticleDOI
TL;DR: In this article, an extended direct simulation Monte Carlo (DSMC) method was used to numerically simulate a wide range of rarefaction regimes from subsonic to supersonic flows through micro/nanoscale converging-diverging nozzles.
Abstract: We use an extended direct simulation Monte Carlo (DSMC) method, applicable to unstructured meshes, to numerically simulate a wide range of rarefaction regimes from subsonic to supersonic flows through micro/nanoscale converging–diverging nozzles. Our unstructured DSMC method considers a uniform distribution of particles, employs proper subcell geometry, and follows an appropriate particle tracking algorithm. Using the unstructured DSMC, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number on the flow field in micro/nanoscale nozzles. If we apply the back pressure at the nozzle outlet, a boundary layer separation occurs before the outlet and a region with reverse flow appears inside the boundary layer. Meanwhile, the core region of inviscid flow experiences multiple shock-expansion waves. In order to accurately simulate the outflow, we extend a buffer zone at the nozzle outlet. We show that a high viscous force creation in the wall boundary layer prevents any supersonic flow formation in the divergent part of the nozzle if the Knudsen number exceeds a moderate magnitude. We also show that the wall boundary layer prevents forming any normal shock in the divergent part. In reality, Mach cores would appear at the nozzle center followed by bow shocks and expansion region. We compare the current DSMC results with the solution of the Navier–Stokes equations subject to the velocity slip and temperature jump boundary conditions. We use OpenFOAM as a compressible flow solver to treat the Navier–Stokes equations.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent understandings of the fundamental combustion processes in wire fire over the last three decades and highlight the complex role of the metallic core in the ignition, flame spread, burning, and extinction of wire fire.
Abstract: Electrical wires and cables have been identified as a potential source of fire in residential buildings, nuclear power plants, aircraft, and spacecraft. This work reviews the recent understandings of the fundamental combustion processes in wire fire over the last three decades. Based on experimental studies using ideal laboratory wires, physical-based theories are proposed to describe the unique wire fire phenomena. The review emphasizes the complex role of the metallic core in the ignition, flame spread, burning, and extinction of wire fire. Moreover, the influence of wire configurations and environmental conditions, such as pressure, oxygen level, and gravity, on wire-fire behaviors are discussed in detail. Finally, the challenges and problems in both the fundamental research, using laboratory wires and numerical simulations, and the applied research, using commercial cables and empirical function approaches, are thoroughly discussed to guide future wire fire research and the design of fire-safe wire and cables.

58 citations

Journal ArticleDOI
TL;DR: In this article, a series of concurrent-flow rod flammability tests were conducted in microgravity aboard the International Space Station (ISS), where a small flow duct was used to create 0 to 55 cm/s flows past three sizes of clear and black PMMA rods.
Abstract: For the first time, a series of concurrent-flow rod flammability tests were conducted in microgravity aboard the International Space Station. A small flow duct was used to create 0 to 55 cm/s flows past three sizes of clear and black PMMA rods. The ambient oxygen concentration in the Microgravity Science Glovebox was varied from 13.6% to 22.2%. Oxygen, carbon dioxide, and carbon monoxide gas sensors provide initial and final readings for each test and indicate that the flames are globally stoichiometric at higher oxygen concentrations, but become more globally fuel rich as the minimum oxygen concentration is approached due to excess pyrolyzate leakage out of the open tail of the hemispherical flames. Quenching extinction occurs at very low forced flows, where the flame shrinks to a hemispherical blue flame and oscillates with increasing amplitude just before going out. Blowoff extinction is initiated by the formation of a hole in the flame sheet in the stagnation region of the flame. A critical Damkohler number formulation is applied across the flammability boundary, and the critical flame temperatures are derived. These critical flame temperatures are then used in a Nusselt number correlation to estimate the convective heat flux to the stagnation region of the rod. A model of surface energy balance is formulated that uses the critical flame temperature and convective heat flux to derive the mass burning rate along the boundary. The rod regression rates calculated from this model compare favorably with the experimental measurements. The surface energy balance reveals that along the blowoff branch, heat losses are negligible whereas in the quenching region, surface radiative loss dominates. At the bottom of the flammability map, the transition from blowoff to quenching occurs when the convective flows become the same order of magnitude as diffusive flows, shifting the critical Damkohler number from residence time limitations to diffusive time limitations.

46 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the thermal runaway and fire behaviors of cylindrical battery modules with the dilution gas of nitrogen and argon, and the results showed that the thermal runaway propagation rate was reduced by 44%.
Abstract: The thermal safety issue of the lithium-ion batteries (LIBs) is a key challenge in new energy storage systems, and novel protection strategies for battery fire and explosions are urgently needed. In this experimental study, the thermal runaway and fire behaviors of cylindrical LIBs are explored in the ambient oxygen concentration from 12% to 21% with the dilution gas of nitrogen and argon. The X-ray CT imaging and energy-dispersive spectrometry are used to assist the micro morphology analysis. The results show that the thermal runaway time interval (between Layers 1 and 2) increases from 136 s (21% O2) to 196 s (12% O2), indicating the thermal-runaway propagation rate is reduced by 44%. Moreover, the mass loss and flaming combustion are both weakened when reducing the oxygen concentration. Whereas, the oxygen concentration has little influence on the maximum cell temperature during thermal runaway (600–800 °C). Comparison between nitrogen and argon dilutions shows a similar effectiveness in alleviating thermal runaway propagation, so the nitrogen dilution is more cost effective. The X-ray CT imaging and energy-dispersive spectrometry show less molten drops and much less fluorine in the burnt cell at a higher oxygen level. This study provides new references for improving the safer transport and storage of battery modules and fire protection strategies.

42 citations