scispace - formally typeset
Search or ask a question
Author

Shutao Li

Bio: Shutao Li is an academic researcher from Hunan University. The author has contributed to research in topics: Hyperspectral imaging & Feature extraction. The author has an hindex of 67, co-authored 313 publications receiving 17649 citations. Previous affiliations of Shutao Li include University of Southampton & Peking University.


Papers
More filters
Proceedings ArticleDOI
01 Jun 2008
TL;DR: Simulation analyses on several machine learning data sets show the effectiveness of the ADASYN sampling approach across five evaluation metrics.
Abstract: This paper presents a novel adaptive synthetic (ADASYN) sampling approach for learning from imbalanced data sets. The essential idea of ADASYN is to use a weighted distribution for different minority class examples according to their level of difficulty in learning, where more synthetic data is generated for minority class examples that are harder to learn compared to those minority examples that are easier to learn. As a result, the ADASYN approach improves learning with respect to the data distributions in two ways: (1) reducing the bias introduced by the class imbalance, and (2) adaptively shifting the classification decision boundary toward the difficult examples. Simulation analyses on several machine learning data sets show the effectiveness of this method across five evaluation metrics.

2,675 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed method can obtain state-of-the-art performance for fusion of multispectral, multifocus, multimodal, and multiexposure images.
Abstract: A fast and effective image fusion method is proposed for creating a highly informative fused image through merging multiple images. The proposed method is based on a two-scale decomposition of an image into a base layer containing large scale variations in intensity, and a detail layer capturing small scale details. A novel guided filtering-based weighted average technique is proposed to make full use of spatial consistency for fusion of the base and detail layers. Experimental results demonstrate that the proposed method can obtain state-of-the-art performance for fusion of multispectral, multifocus, multimodal, and multiexposure images.

1,300 citations

Journal ArticleDOI
TL;DR: It is concluded that although various image fusion methods have been proposed, there still exist several future directions in different image fusion applications and the researches in the image fusion field are still expected to significantly grow in the coming years.

871 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic review of deep learning-based hyperspectral image classification literatures and compare several strategies for this topic, which can provide some guidelines for future studies on this topic.
Abstract: Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework which divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral-spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.

761 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed edge-preserving filtering based classification method can improve the classification accuracy significantly in a very short time and can be easily applied in real applications.
Abstract: The integration of spatial context in the classification of hyperspectral images is known to be an effective way in improving classification accuracy. In this paper, a novel spectral-spatial classification framework based on edge-preserving filtering is proposed. The proposed framework consists of the following three steps. First, the hyperspectral image is classified using a pixelwise classifier, e.g., the support vector machine classifier. Then, the resulting classification map is represented as multiple probability maps, and edge-preserving filtering is conducted on each probability map, with the first principal component or the first three principal components of the hyperspectral image serving as the gray or color guidance image. Finally, according to the filtered probability maps, the class of each pixel is selected based on the maximum probability. Experimental results demonstrate that the proposed edge-preserving filtering based classification method can improve the classification accuracy significantly in a very short time. Thus, it can be easily applied in real applications.

640 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario is provided.
Abstract: With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Although existing knowledge discovery and data engineering techniques have shown great success in many real-world applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data.

6,320 citations

Journal ArticleDOI
TL;DR: It is suggested that designing a suitable image‐processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map and the selection of a suitable classification method is especially significant for improving classification accuracy.
Abstract: Image classification is a complex process that may be affected by many factors. This paper examines current practices, problems, and prospects of image classification. The emphasis is placed on the summarization of major advanced classification approaches and the techniques used for improving classification accuracy. In addition, some important issues affecting classification performance are discussed. This literature review suggests that designing a suitable image-processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map. Effective use of multiple features of remotely sensed data and the selection of a suitable classification method are especially significant for improving classification accuracy. Non-parametric classifiers such as neural network, decision tree classifier, and knowledge-based classification have increasingly become important approaches for multisource data classification. Integration of remote sensing, geographical information systems (GIS), and expert system emerges as a new research frontier. More research, however, is needed to identify and reduce uncertainties in the image-processing chain to improve classification accuracy.

2,741 citations

Journal ArticleDOI
TL;DR: A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
Abstract: The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.

1,665 citations

Journal ArticleDOI
TL;DR: A general framework of DL for RS data is provided, and the state-of-the-art DL methods in RS are regarded as special cases of input-output data combined with various deep networks and tuning tricks.
Abstract: Deep-learning (DL) algorithms, which learn the representative and discriminative features in a hierarchical manner from the data, have recently become a hotspot in the machine-learning area and have been introduced into the geoscience and remote sensing (RS) community for RS big data analysis. Considering the low-level features (e.g., spectral and texture) as the bottom level, the output feature representation from the top level of the network can be directly fed into a subsequent classifier for pixel-based classification. As a matter of fact, by carefully addressing the practical demands in RS applications and designing the input?output levels of the whole network, we have found that DL is actually everywhere in RS data analysis: from the traditional topics of image preprocessing, pixel-based classification, and target recognition, to the recent challenging tasks of high-level semantic feature extraction and RS scene understanding.

1,625 citations

Journal ArticleDOI
TL;DR: Seven vital areas of research in this topic are identified, covering the full spectrum of learning from imbalanced data: classification, regression, clustering, data streams, big data analytics and applications, e.g., in social media and computer vision.
Abstract: Despite more than two decades of continuous development learning from imbalanced data is still a focus of intense research. Starting as a problem of skewed distributions of binary tasks, this topic evolved way beyond this conception. With the expansion of machine learning and data mining, combined with the arrival of big data era, we have gained a deeper insight into the nature of imbalanced learning, while at the same time facing new emerging challenges. Data-level and algorithm-level methods are constantly being improved and hybrid approaches gain increasing popularity. Recent trends focus on analyzing not only the disproportion between classes, but also other difficulties embedded in the nature of data. New real-life problems motivate researchers to focus on computationally efficient, adaptive and real-time methods. This paper aims at discussing open issues and challenges that need to be addressed to further develop the field of imbalanced learning. Seven vital areas of research in this topic are identified, covering the full spectrum of learning from imbalanced data: classification, regression, clustering, data streams, big data analytics and applications, e.g., in social media and computer vision. This paper provides a discussion and suggestions concerning lines of future research for each of them.

1,503 citations