scispace - formally typeset
Search or ask a question
Author

Simon Duquennoy

Bio: Simon Duquennoy is an academic researcher from French Institute for Research in Computer Science and Automation. The author has contributed to research in topics: Wireless sensor network & Wireless network. The author has an hindex of 28, co-authored 70 publications receiving 3346 citations. Previous affiliations of Simon Duquennoy include Laboratoire d'Informatique Fondamentale de Lille & Swedish Institute of Computer Science.


Papers
More filters
Proceedings ArticleDOI
01 Nov 2015
TL;DR: This paper addresses the challenge of bringing TSCH (Time Slotted Channel Hopping MAC) to dynamic networks, focusing on low-power IPv6 and RPL networks, and introduces Orchestra, which allows Orchestra to build non-deterministic networks while exploiting the robustness of TSCH.
Abstract: Time slotted operation is a well-proven approach to achieve highly reliable low-power networking through scheduling and channel hopping. It is, however, difficult to apply time slotting to dynamic networks as envisioned in the Internet of Things. Commonly, these applications do not have pre-defined periodic traffic patterns and nodes can be added or removed dynamically.This paper addresses the challenge of bringing TSCH (Time Slotted Channel Hopping MAC) to such dynamic networks. We focus on low-power IPv6 and RPL networks, and introduce Orchestra. In Orchestra, nodes autonomously compute their own, local schedules. They maintain multiple schedules, each allocated to a particular traffic plane (application, routing, MAC), and updated automatically as the topology evolves. Orchestra (re)computes local schedules without signaling overhead, and does not require any central or distributed scheduler. Instead, it relies on the existing network stack information to maintain the schedules. This scheme allows Orchestra to build non-deterministic networks while exploiting the robustness of TSCH.We demonstrate the practicality of Orchestra and quantify its benefits through extensive evaluation in two testbeds, on two hardware platforms. Orchestra reduces, or even eliminates, network contention. In long running experiments of up to 72~h we show that Orchestra achieves end-to-end delivery ratios of over 99.99%. Compared to RPL in asynchronous low-power listening networks, Orchestra improves reliability by two orders of magnitude, while achieving a similar latency-energy balance.

360 citations

Proceedings ArticleDOI
03 Nov 2017
TL;DR: A blockchain-based design for the IoT that brings a distributed access control and data management that empower the users with data ownership and facilitates the storage of time-series IoT data at the edge of the network via a locality-aware decentralized storage system that is managed with the blockchain technology.
Abstract: Today the cloud plays a central role in storing, processing, and distributing data Despite contributing to the rapid development of IoT applications, the current IoT cloud-centric architecture has led into a myriad of isolated data silos that hinders the full potential of holistic data-driven analytics within the IoT In this paper, we present a blockchain-based design for the IoT that brings a distributed access control and data management We depart from the current trust model that delegates access control of our data to a centralized trusted authority and instead empower the users with data ownership Our design is tailored for IoT data streams and enables secure data sharing We enable a secure and resilient access control management, by utilizing the blockchain as an auditable and distributed access control layer to the storage layer We facilitate the storage of time-series IoT data at the edge of the network via a locality-aware decentralized storage system that is managed with the blockchain technology Our system is agnostic of the physical storage nodes and supports as well utilization of cloud storage resources as storage nodes

330 citations

Proceedings ArticleDOI
17 Oct 2011
TL;DR: This work presents an implementation of the IETF Constrained Application Protocol (CoAP) for the Contiki operating system that leverages thecontikiMAC low-power duty cycling mechanism to provide power efficiency.
Abstract: Internet of Things devices will by and large be battery-operated, but existing application protocols have typically not been designed with power-efficiency in mind. In low-power wireless systems, power-efficiency is determined by the ability to maintain a low radio duty cycle: keeping the radio off as much as possible. We present an implementation of the IETF Constrained Application Protocol (CoAP) for the Contiki operating system that leverages the ContikiMAC low-power duty cycling mechanism to provide power efficiency. We experimentally evaluate our low-power CoAP, demonstrating that an existing application layer protocol can be made power-efficient through a generic radio duty cycling mechanism. To the best of our knowledge, our CoAP implementation is the first to provide power-efficient operation through radio duty cycling. Our results question the need for specialized low-power mechanisms at the application layer, instead providing low-power operation only at the radio duty cycling layer.

267 citations

Proceedings ArticleDOI
27 Jun 2011
TL;DR: This paper provides End-to-End (E2E) secure communication between IP enabled sensor networks and the traditional Internet using 6LoWPAN extension that supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP).
Abstract: Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. It may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between IP enabled sensor networks and the traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms.

241 citations

Posted Content
TL;DR: In this article, the authors present a blockchain-based design for the IoT that brings a distributed access control and data management, where the authors depart from the current trust model that delegates access control of our data to a centralized trusted authority and instead empower the users with data ownership.
Abstract: Today the cloud plays a central role in storing, processing, and distributing data. Despite contributing to the rapid development of IoT applications, the current IoT cloud-centric architecture has led into a myriad of isolated data silos that hinders the full potential of holistic data-driven analytics within the IoT. In this paper, we present a blockchain-based design for the IoT that brings a distributed access control and data management. We depart from the current trust model that delegates access control of our data to a centralized trusted authority and instead empower the users with data ownership. Our design is tailored for IoT data streams and enables secure data sharing. We enable a secure and resilient access control management, by utilizing the blockchain as an auditable and distributed access control layer to the storage layer. We facilitate the storage of time-series IoT data at the edge of the network via a locality-aware decentralized storage system that is managed with the blockchain technology. Our system is agnostic of the physical storage nodes and supports as well utilization of cloud storage resources as storage nodes.

219 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.

12,539 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
TL;DR: It is discussed, how blockchain, which is the underlying technology for bitcoin, can be a key enabler to solve many IoT security problems.

1,743 citations

Journal ArticleDOI
TL;DR: A comprehensive classification of blockchain-enabled applications across diverse sectors such as supply chain, business, healthcare, IoT, privacy, and data management is presented, and key themes, trends and emerging areas for research are established.

1,310 citations

Journal ArticleDOI
TL;DR: This paper presents the key features and the driver technologies of IoT, and identifies the application scenarios and the correspondent potential applications, and focuses on research challenges and open issues to be faced for the IoT realization in the real world.

1,178 citations