scispace - formally typeset
Search or ask a question

Showing papers by "Subhashini Venugopalan published in 2020"


Journal ArticleDOI
TL;DR: Machine-learning algorithms trained with retinal fundus images, with subject metadata or with both data types, predict haemoglobin concentration with mean absolute errors lower than 0.75 and anaemia with areas under the curve in the range of 0.74–0.89.
Abstract: Owing to the invasiveness of diagnostic tests for anaemia and the costs associated with screening for it, the condition is often undetected. Here, we show that anaemia can be detected via machine-learning algorithms trained using retinal fundus images, study participant metadata (including race or ethnicity, age, sex and blood pressure) or the combination of both data types (images and study participant metadata). In a validation dataset of 11,388 study participants from the UK Biobank, the metadata-only, fundus-image-only and combined models predicted haemoglobin concentration (in g dl–1) with mean absolute error values of 0.73 (95% confidence interval: 0.72–0.74), 0.67 (0.66–0.68) and 0.63 (0.62–0.64), respectively, and with areas under the receiver operating characteristic curve (AUC) values of 0.74 (0.71–0.76), 0.87 (0.85–0.89) and 0.88 (0.86–0.89), respectively. For 539 study participants with self-reported diabetes, the combined model predicted haemoglobin concentration with a mean absolute error of 0.73 (0.68–0.78) and anaemia an AUC of 0.89 (0.85–0.93). Automated anaemia screening on the basis of fundus images could particularly aid patients with diabetes undergoing regular retinal imaging and for whom anaemia can increase morbidity and mortality risks. Machine-learning algorithms trained with retinal fundus images, with subject metadata or with both data types, predict haemoglobin concentration with mean absolute errors lower than 0.75 g dl–1 and anaemia with areas under the curve in the range of 0.74–0.89.

89 citations


Journal ArticleDOI
TL;DR: A deep learning model is presented that can predict the presence of diabetic macular edema from color fundus photographs with superior specificity and positive predictive value compared to retinal specialists.
Abstract: Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC–AUC of 0.89 (95% CI: 0.87–0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82–85%), but only half the specificity (45–50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81–0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85–0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging. Diabetic eye disease is a cause of preventable blindness and accurate and timely referral of patients with diabetic macular edema is important to start treatment. Here the authors present a deep learning model that can predict the presence of diabetic macular edema from color fundus photographs with superior specificity and positive predictive value compared to retinal specialists.

72 citations


Journal ArticleDOI
TL;DR: The deep-learning systems predicted diabetic retinopathy development using colour fundus photographs, and the systems were independent of and more informative than available risk factors.
Abstract: Diabetic retinopathy (DR) screening is instrumental in preventing blindness, but faces a scaling challenge as the number of diabetic patients rises. Risk stratification for the development of DR may help optimize screening intervals to reduce costs while improving vision-related outcomes. We created and validated two versions of a deep learning system (DLS) to predict the development of mild-or-worse ("Mild+") DR in diabetic patients undergoing DR screening. The two versions used either three-fields or a single field of color fundus photographs (CFPs) as input. The training set was derived from 575,431 eyes, of which 28,899 had known 2-year outcome, and the remaining were used to augment the training process via multi-task learning. Validation was performed on both an internal validation set (set A; 7,976 eyes; 3,678 with known outcome) and an external validation set (set B; 4,762 eyes; 2,345 with known outcome). For predicting 2-year development of DR, the 3-field DLS had an area under the receiver operating characteristic curve (AUC) of 0.79 (95%CI, 0.78-0.81) on validation set A. On validation set B (which contained only a single field), the 1-field DLS's AUC was 0.70 (95%CI, 0.67-0.74). The DLS was prognostic even after adjusting for available risk factors (p<0.001). When added to the risk factors, the 3-field DLS improved the AUC from 0.72 (95%CI, 0.68-0.76) to 0.81 (95%CI, 0.77-0.84) in validation set A, and the 1-field DLS improved the AUC from 0.62 (95%CI, 0.58-0.66) to 0.71 (95%CI, 0.68-0.75) in validation set B. The DLSs in this study identified prognostic information for DR development from CFPs. This information is independent of and more informative than the available risk factors.

57 citations


Posted Content
TL;DR: Blur Integrated Gradients (BEG) as mentioned in this paper is a new technique for deep networks applied to perception tasks, which produces scores in the scale/frequency dimension, that capture interesting phenomena.
Abstract: We study the attribution problem [28] for deep networks applied to perception tasks. For vision tasks, attribution techniques attribute the prediction of a network to the pixels of the input image. We propose a new technique called \emph{Blur Integrated Gradients}. This technique has several advantages over other methods. First, it can tell at what scale a network recognizes an object. It produces scores in the scale/frequency dimension, that we find captures interesting phenomena. Second, it satisfies the scale-space axioms [14], which imply that it employs perturbations that are free of artifact. We therefore produce explanations that are cleaner and consistent with the operation of deep networks. Third, it eliminates the need for a 'baseline' parameter for Integrated Gradients [31] for perception tasks. This is desirable because the choice of baseline has a significant effect on the explanations. We compare the proposed technique against previous techniques and demonstrate application on three tasks: ImageNet object recognition, Diabetic Retinopathy prediction, and AudioSet audio event identification.

24 citations


Proceedings ArticleDOI
14 Jun 2020
TL;DR: A new technique called Blur Integrated Gradients (Blur IG) is proposed, which can tell at what scale a network recognizes an object and satisfies the scale-space axioms, which imply that it employs perturbations that are free of artifact.
Abstract: We study the attribution problem for deep networks applied to perception tasks. For vision tasks, attribution techniques attribute the prediction of a network to the pixels of the input image. We propose a new technique called Blur Integrated Gradients (Blur IG). This technique has several advantages over other methods. First, it can tell at what scale a network recognizes an object. It produces scores in the scale/frequency dimension, that we find captures interesting phenomena. Second, it satisfies the scale-space axioms, which imply that it employs perturbations that are free of artifact. We therefore produce explanations that are cleaner and consistent with the operation of deep networks. Third, it eliminates the need for baseline parameter for Integrated Gradients for perception tasks. This is desirable because the choice of baseline has a significant effect on the explanations. We compare the proposed technique against previous techniques and demonstrate application on three tasks: ImageNet object recognition, Diabetic Retinopathy prediction, and AudioSet audio event identification. Code and examples are at https://github.com/PAIR-code/saliency.

20 citations


Book ChapterDOI
04 Oct 2020
TL;DR: In this paper, the authors propose a framework to convert predictions from explanation techniques to a mechanism of discovery, which is able to explain the underlying scientific mechanism, thus bridging the gap between the model's performance and human understanding.
Abstract: Model explanation techniques play a critical role in understanding the source of a model’s performance and making its decisions transparent. Here we investigate if explanation techniques can also be used as a mechanism for scientific discovery. We make three contributions: first, we propose a framework to convert predictions from explanation techniques to a mechanism of discovery. Second, we show how generative models in combination with black-box predictors can be used to generate hypotheses (without human priors) that can be critically examined. Third, with these techniques we study classification models for retinal images predicting Diabetic Macular Edema (DME), where recent work [30] showed that a CNN trained on these images is likely learning novel features in the image. We demonstrate that the proposed framework is able to explain the underlying scientific mechanism, thus bridging the gap between the model’s performance and human understanding.

10 citations


Posted ContentDOI
16 Nov 2020-bioRxiv
TL;DR: A novel unbiased phenotypic profiling platform that combines automation, Cell Painting, and deep learning is presented, able to confidently separate LRRK2 and sporadic PD lines from healthy controls and supporting the capacity of this platform for PD modeling and drug screening applications.
Abstract: Drug discovery for Parkinson’s disease (PD) is impeded by the lack of screenable phenotypes in scalable cell models. Here we present a novel unbiased phenotypic profiling platform that combines automation, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 PD patients and carefully matched healthy controls, generating the largest publicly available Cell Painting dataset to date. Using fixed weights from a convolutional deep neural network trained on ImageNet, we generated unbiased deep embeddings from each image, and applied these to train machine learning models to detect morphological disease phenotypes. Interestingly, our models captured individual variation by identifying specific cell lines within the cohort with high fidelity, even across different batches and plate layouts, demonstrating platform robustness and sensitivity. Importantly, our models were able to confidently separate LRRK2 and sporadic PD lines from healthy controls (ROC AUC 0.79 (0.08 standard deviation (SD))) supporting the capacity of this platform for PD modeling and drug screening applications.

8 citations


Posted Content
TL;DR: This work proposes a framework to convert predictions from explanation techniques to a mechanism of discovery, and shows how generative models in combination with black-box predictors can be used to generate hypotheses that can be critically examined.
Abstract: Model explanation techniques play a critical role in understanding the source of a model's performance and making its decisions transparent. Here we investigate if explanation techniques can also be used as a mechanism for scientific discovery. We make three contributions: first, we propose a framework to convert predictions from explanation techniques to a mechanism of discovery. Second, we show how generative models in combination with black-box predictors can be used to generate hypotheses (without human priors) that can be critically examined. Third, with these techniques we study classification models for retinal images predicting Diabetic Macular Edema (DME), where recent work showed that a CNN trained on these images is likely learning novel features in the image. We demonstrate that the proposed framework is able to explain the underlying scientific mechanism, thus bridging the gap between the model's performance and human understanding.

7 citations


Posted Content
Subham Sekhar Sahoo1, Subhashini Venugopalan1, Li Li1, Rishabh Singh1, Patrick Riley1 
TL;DR: This work proposes a technique for combining gradient-based methods with symbolic techniques to scale such analyses and demonstrates its application for model explanation by producing a saliency map which explains "where a model is looking" when making a prediction.
Abstract: Symbolic techniques based on Satisfiability Modulo Theory (SMT) solvers have been proposed for analyzing and verifying neural network properties, but their usage has been fairly limited owing to their poor scalability with larger networks. In this work, we propose a technique for combining gradient-based methods with symbolic techniques to scale such analyses and demonstrate its application for model explanation. In particular, we apply this technique to identify minimal regions in an input that are most relevant for a neural network's prediction. Our approach uses gradient information (based on Integrated Gradients) to focus on a subset of neurons in the first layer, which allows our technique to scale to large networks. The corresponding SMT constraints encode the minimal input mask discovery problem such that after masking the input, the activations of the selected neurons are still above a threshold. After solving for the minimal masks, our approach scores the mask regions to generate a relative ordering of the features within the mask. This produces a saliency map which explains "where a model is looking" when making a prediction. We evaluate our technique on three datasets - MNIST, ImageNet, and Beer Reviews, and demonstrate both quantitatively and qualitatively that the regions generated by our approach are sparser and achieve higher saliency scores compared to the gradient-based methods alone.

6 citations


Journal ArticleDOI
TL;DR: Stargan as mentioned in this paper is a neural network-based batch equalization method that can transfer images from one batch to another while preserving the biological phenotype, using the StarGAN architecture that has shown considerable ability in style transfer.
Abstract: Motivation Advances in automation and imaging have made it possible to capture a large image dataset that spans multiple experimental batches of data. However, accurate biological comparison across the batches is challenged by batch-to-batch variation (i.e. batch effect) due to uncontrollable experimental noise (e.g. varying stain intensity or cell density). Previous approaches to minimize the batch effect have commonly focused on normalizing the low-dimensional image measurements such as an embedding generated by a neural network. However, normalization of the embedding could suffer from over-correction and alter true biological features (e.g. cell size) due to our limited ability to interpret the effect of the normalization on the embedding space. Although techniques like flat-field correction can be applied to normalize the image values directly, they are limited transformations that handle only simple artifacts due to batch effect. Results We present a neural network-based batch equalization method that can transfer images from one batch to another while preserving the biological phenotype. The equalization method is trained as a generative adversarial network (GAN), using the StarGAN architecture that has shown considerable ability in style transfer. After incorporating new objectives that disentangle batch effect from biological features, we show that the equalized images have less batch information and preserve the biological information. We also demonstrate that the same model training parameters can generalize to two dramatically different types of cells, indicating this approach could be broadly applicable. Availability and implementation https://github.com/tensorflow/gan/tree/master/tensorflow_gan/examples/stargan. Supplementary information Supplementary data are available at Bioinformatics online.

5 citations


Posted ContentDOI
09 Feb 2020-bioRxiv
TL;DR: A batch equalization method that can transfer images from one batch to another while preserving the biological phenotype is developed, and it is shown that the equalized images have less batch information as determined by a batch-prediction task and perform better in a biologically relevant task.
Abstract: Advances in automation and imaging have made it possible to capture large image datasets for experiments that span multiple weeks with multiple experimental batches of data. However, accurate biological comparisons across the batches is challenged by the batch-to-batch variation due to uncontrollable experimental noise (e.g., different stain intensity or illumination conditions). To mediate the batch variation (i.e. the batch effect), we developed a batch equalization method that can transfer images from one batch to another while preserving the biological phenotype. The equalization method is trained as a generative adversarial network (GAN), using the StarGAN architecture that has shown considerable ability in doing style transfer for consumer images. After incorporating an additional objective that disentangles batch effect from biological features using an existing GAN framework, we show that the equalized images have less batch information as determined by a batch-prediction task and perform better in a biologically relevant task (e.g., Mechanism of Action prediction).

Journal ArticleDOI
TL;DR: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper.