Author

# Tatsuo Itoh

Other affiliations: University of Texas System, University of Duisburg, K.N.Toosi University of Technology ...read more

Bio: Tatsuo Itoh is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Microstrip & Metamaterial. The author has an hindex of 87, co-authored 927 publications receiving 36847 citations. Previous affiliations of Tatsuo Itoh include University of Texas System & University of Duisburg.

Topics: Microstrip, Metamaterial, Antenna (radio), Microstrip antenna, Resonator

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

11 Nov 2005

TL;DR: In this paper, the authors define Metamaterials (MTMs) and Left-Handed (LH) MTMs as a class of two-dimensional MTMs.

Abstract: Preface. Acknowledgments. Acronyms. 1 Introduction. 1.1 Definition of Metamaterials (MTMs) and Left-Handed (LH) MTMs. 1.2 Theoretical Speculation by Viktor Veselago. 1.3 Experimental Demonstration of Left-Handedness. 1.4 Further Numerical and Experimental Confirmations. 1.5 "Conventional" Backward Waves and Novelty of LH MTMs. 1.6 Terminology. 1.7 Transmission Line (TL) Approach. 1.8 Composite Right/Left-Handed (CRLH) MTMs. 1.9 MTMs and Photonic Band-Gap (PBG) Structures. 1.10 Historical "Germs" of MTMs. References. 2 Fundamentals of LH MTMs. 2.1 Left-Handedness from Maxwell's Equations. 2.2 Entropy Conditions in Dispersive Media. 2.3 Boundary Conditions. 2.4 Reversal of Doppler Effect. 2.5 Reversal of Vavilov- Cerenkov Radiation. 2.6 Reversal of Snell's Law: Negative Refraction. 2.7 Focusing by a "Flat LH Lens". 2.8 Fresnel Coefficients. 2.9 Reversal of Goos-H anchen Effect. 2.10 Reversal of Convergence and Divergence in Convex and Concave Lenses. 2.11 Subwavelength Diffraction. References. 3 TLTheoryofMTMs. 3.1 Ideal Homogeneous CRLH TLs. 3.1.1 Fundamental TL Characteristics. 3.1.2 Equivalent MTM Constitutive Parameters. 3.1.3 Balanced and Unbalanced Resonances. 3.1.4 Lossy Case. 3.2 LC Network Implementation. 3.2.1 Principle. 3.2.2 Difference with Conventional Filters. 3.2.3 Transmission Matrix Analysis. 3.2.4 Input Impedance. 3.2.5 Cutoff Frequencies. 3.2.6 Analytical Dispersion Relation. 3.2.7 Bloch Impedance. 3.2.8 Effect of Finite Size in the Presence of Imperfect Matching. 3.3 Real Distributed 1D CRLH Structures. 3.3.1 General Design Guidelines. 3.3.2 Microstrip Implementation. 3.3.3 Parameters Extraction. 3.4 Experimental Transmission Characteristics. 3.5 Conversion from Transmission Line to Constitutive Parameters. References. 4 Two-Dimensional MTMs. 4.1 Eigenvalue Problem. 4.1.1 General Matrix System. 4.1.2 CRLH Particularization. 4.1.3 Lattice Choice, Symmetry Points, Brillouin Zone, and 2D Dispersion Representations. 4.2 Driven Problem by the Transmission Matrix Method (TMM). 4.2.1 Principle of the TMM. 4.2.2 Scattering Parameters. 4.2.3 Voltage and Current Distributions. 4.2.4 Interest and Limitations of the TMM. 4.3 Transmission Line Matrix (TLM) Modeling Method. 4.3.1 TLM Modeling of the Unloaded TL Host Network. 4.3.2 TLM Modeling of the Loaded TL Host Network (CRLH). 4.3.3 Relationship between Material Properties and the TLM Model Parameters. 4.3.4 Suitability of the TLM Approach for MTMs. 4.4 Negative Refractive Index (NRI) Effects. 4.4.1 Negative Phase Velocity. 4.4.2 Negative Refraction. 4.4.3 Negative Focusing. 4.4.4 RH-LH Interface Surface Plasmons. 4.4.5 Reflectors with Unusual Properties. 4.5 Distributed 2D Structures. 4.5.1 Description of Possible Structures. 4.5.2 Dispersion and Propagation Characteristics. 4.5.3 Parameter Extraction. 4.5.4 Distributed Implementation of the NRI Slab. References. 5 Guided-Wave Applications. 5.1 Dual-Band Components. 5.1.1 Dual-Band Property of CRLH TLs. 5.1.2 Quarter-Wavelength TL and Stubs. 5.1.3 Passive Component Examples: Quadrature Hybrid and Wilkinson Power Divider. 5.1.3.1 Quadrature Hybrid. 5.1.3.2 Wilkinson Power Divider. 5.1.4 Nonlinear Component Example: Quadrature Subharmonically Pumped Mixer. 5.2 Enhanced-Bandwidth Components. 5.2.1 Principle of Bandwidth Enhancement. 5.2.2 Rat-Race Coupler Example. 5.3 Super-compact Multilayer "Vertical" TL. 5.3.1 "Vertical" TL Architecture. 5.3.2 TL Performances. 5.3.3 Diplexer Example. 5.4 Tight Edge-Coupled Coupled-Line Couplers (CLCs). 5.4.1 Generalities on Coupled-Line Couplers. 5.4.1.1 TEM and Quasi-TEM Symmetric Coupled-Line Structures with Small Interspacing: Impedance Coupling (IC). 5.4.1.2 Non-TEM Symmetric Coupled-Line Structures with Relatively Large Spacing: Phase Coupling (PC). 5.4.1.3 Summary on Symmetric Coupled-Line Structures. 5.4.1.4 Asymmetric Coupled-Line Structures. 5.4.1.5 Advantages of MTM Couplers. 5.4.2 Symmetric Impedance Coupler. 5.4.3 Asymmetric Phase Coupler. 5.5 Negative and Zeroth-Order Resonator. 5.5.1 Principle. 5.5.2 LC Network Implementation. 5.5.3 Zeroth-Order Resonator Characteristics. 5.5.4 Circuit Theory Verification. 5.5.5 Microstrip Realization. References. 6 Radiated-Wave Applications. 6.1 Fundamental Aspects of Leaky-Wave Structures. 6.1.1 Principle of Leakage Radiation. 6.1.2 Uniform and Periodic Leaky-Wave Structures. 6.1.2.1 Uniform LW Structures. 6.1.2.2 Periodic LW Structures. 6.1.3 Metamaterial Leaky-Wave Structures. 6.2 Backfire-to-Endfire (BE) Leaky-Wave (LW) Antenna. 6.3 Electronically Scanned BE LW Antenna. 6.3.1 Electronic Scanning Principle. 6.3.2 Electronic Beamwidth Control Principle. 6.3.3 Analysis of the Structure and Results. 6.4 Reflecto-Directive Systems. 6.4.1 Passive Retro-Directive Reflector. 6.4.2 Arbitrary-Angle Frequency Tuned Reflector. 6.4.3 Arbitrary-Angle Electronically Tuned Reflector. 6.5 Two-Dimensional Structures. 6.5.1 Two-Dimensional LW Radiation. 6.5.2 Conical-Beam Antenna. 6.5.3 Full-Space Scanning Antenna. 6.6 Zeroth Order Resonating Antenna. 6.7 Dual-Band CRLH-TL Resonating Ring Antenna. 6.8 Focusing Radiative "Meta-Interfaces". 6.8.1 Heterodyne Phased Array. 6.8.2 Nonuniform Leaky-Wave Radiator. References. 7 The Future of MTMs. 7.1 "Real-Artificial" Materials: the Challenge of Homogenization. 7.2 Quasi-Optical NRI Lenses and Devices. 7.3 Three-Dimensional Isotropic LH MTMs. 7.4 Optical MTMs. 7.5 "Magnetless" Magnetic MTMs. 7.6 Terahertz Magnetic MTMs. 7.7 Surface Plasmonic MTMs. 7.8 Antenna Radomes and Frequency Selective Surfaces. 7.9 Nonlinear MTMs. 7.10 Active MTMs. 7.11 Other Topics of Interest. References. Index.

2,750 citations

••

[...]

TL;DR: In this paper, the fundamental electromagnetic properties of left-handed metamaterials and the physical realization of these materials are reviewed based on a general transmission line (TL) approach.

Abstract: Metamaterials are artificial structures that can be designed to exhibit specific electromagnetic properties not commonly found in nature. Recently, metamaterials with simultaneously negative permittivity (/spl epsiv/) and permeability (/spl mu/), more commonly referred to as left-handed (LH) materials, have received substantial attention in the scientific and engineering communities. The unique properties of LHMs have allowed novel applications, concepts, and devices to be developed. In this article, the fundamental electromagnetic properties of LHMs and the physical realization of these materials are reviewed based on a general transmission line (TL) approach. The general TL approach provides insight into the physical phenomena of LHMs and provides an efficient design tool for LH applications. LHMs are considered to be a more general model of composite right/left hand (CRLH) structures, which also include right-handed (RH) effects that occur naturally in practical LHMs. Characterization, design, and implementation of one-dimensional and two-dimensional CRLH TLs are examined. In addition, microwave devices based on CRLH TLs and their applications are presented.

1,225 citations

••

[...]

TL;DR: In this article, a new defected ground unit structure (DGS) for the microstrip line is proposed, which can provide the bandgap characteristic in some frequency bands with only one or more unit lattices.

Abstract: A new defected ground structure (DGS) for the microstrip line is proposed in this paper. The proposed DGS unit structure can provide the bandgap characteristic in some frequency bands with only one or more unit lattices. The equivalent circuit for the proposed defected ground unit structure is derived by means of three-dimensional field analysis methods. The equivalent-circuit parameters are extracted by using a simple circuit analysis method. By employing the extracted parameters and circuit analysis theory, the bandgap effect for the provided defected ground unit structure can be explained. By using the derived and extracted equivalent circuit and parameters, the low-pass filters are designed and implemented. The experimental results show excellent agreement with theoretical results and the validity of the modeling method for the proposed defected ground unit structure.

1,204 citations

•

[...]

01 Jan 1989

TL;DR: The Finite Element Method (J. Davies), Integral Equation Technique (I. Mosig), Planar Circuit Analysis (K. Gupta and M. Abouzahra), Spectral Domain Approach (T. Uwaro & T. Itoh), Transverse Resonance Technique (R. Sorrentino), and Transmission Line Matrix (TLM) Method (W. Wolff) as discussed by the authors.

Abstract: The Finite Element Method (J. Davies). Integral Equation Technique (J. Mosig). Planar Circuit Analysis (K. Gupta & M. Abouzahra). Spectral Domain Approach (T. Uwaro & T. Itoh). The Method of Lines (R. Pregla & W. Pascher). The Waveguide Model for the Analysis of Microstrip Discontinuities (I. Wolff). The Transmission Line Matrix (TLM) Method (W. Hoefer). The Mode--Matching Method (Y. Shih). Generalized Scattering Matrix Technique (T. Itoh). Transverse Resonance Technique (R. Sorrentino). Index.

1,059 citations

••

[...]

TL;DR: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs), a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure.

Abstract: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs). An LWA uses a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure. Such antennas may be uniform, quasi-uniform, or periodic. After reviewing the basic physics and operating principles, a summary of some recent advances for these types of structures is given. Recent advances include structures that can scan to endfire, structures that can scan through broadside, structures that are conformal to surfaces, and structures that incorporate power recycling or include active elements. Some of these novel structures are inspired by recent advances in the metamaterials area.

899 citations

##### Cited by

More filters

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

••

[...]

TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.

Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,394 citations

•

[...]

01 Jan 2001

TL;DR: In this paper, the authors present a general framework for coupling matrix for Coupled Resonator Filters with short-circuited Stubs (UWB) and Cascaded Quadruplet (CQ) filters.

Abstract: Preface to the Second Edition. Preface to the First Edition. 1 Introduction. 2 Network Analysis. 2.1 Network Variables. 2.2 Scattering Parameters. 2.3 Short-Circuit Admittance Parameters. 2.4 Open-Circuit Impedance Parameters. 2.5 ABCD Parameters. 2.6 Transmission-Line Networks. 2.7 Network Connections. 2.8 Network Parameter Conversions. 2.9 Symmetrical Network Analysis. 2.10 Multiport Networks. 2.11 Equivalent and Dual Network. 2.12 Multimode Networks. 3 Basic Concepts and Theories of Filters. 3.1 Transfer Functions. 3.2 Lowpass Prototype Filters and Elements. 3.3 Frequency and Element Transformations. 3.4 Immittance Inverters. 3.5 Richards' Transformation and Kuroda Identities. 3.6 Dissipation and Unloaded Quality Factor. 4 Transmission Lines and Components. 4.1 Microstrip Lines. 4.2 Coupled Lines. 4.3 Discontinuities and Components. 4.4 Other Types of Microstrip Lines. 4.5 Coplanar Waveguide (CPW). 4.6 Slotlines. 5 Lowpass and Bandpass Filters. 5.1 Lowpass Filters. 5.2 Bandpass Filters. 6 Highpass and Bandstop Filters. 6.1 Highpass Filters. 6.2 Bandstop Filters. 7 Coupled-Resonator Circuits. 7.1 General Coupling Matrix for Coupled-Resonator Filters. 7.2 General Theory of Couplings. 7.3 General Formulation for Extracting Coupling Coefficient k. 7.4 Formulation for Extracting External Quality Factor Qe. 7.5 Numerical Examples. 7.6 General Coupling Matrix Including Source and Load. 8 CAD for Low-Cost and High-Volume Production. 8.1 Computer-Aided Design (CAD) Tools. 8.2 Computer-Aided Analysis (CAA). 8.3 Filter Synthesis by Optimization. 8.4 CAD Examples. 9 Advanced RF/Microwave Filters. 9.1 Selective Filters with a Single Pair of Transmission Zeros. 9.2 Cascaded Quadruplet (CQ) Filters. 9.3 Trisection and Cascaded Trisection (CT) Filters. 9.4 Advanced Filters with Transmission-Line Inserted Inverters. 9.5 Linear-Phase Filters. 9.6 Extracted Pole Filters. 9.7 Canonical Filters. 9.8 Multiband Filters. 10 Compact Filters and Filter Miniaturization. 10.1 Miniature Open-Loop and Hairpin Resonator Filters. 10.2 Slow-Wave Resonator Filters. 10.3 Miniature Dual-Mode Resonator Filters. 10.4 Lumped-Element Filters. 10.5 Miniature Filters Using High Dielectric-Constant Substrates. 10.6 Multilayer Filters. 11 Superconducting Filters. 11.1 High-Temperature Superconducting (HTS) Materials. 11.2 HTS Filters for Mobile Communications. 11.3 HTS Filters for Satellite Communications. 11.4 HTS Filters for Radio Astronomy and Radar. 11.5 High-Power HTS Filters. 11.6 Cryogenic Package. 12 Ultra-Wideband (UWB) Filters. 12.1 UWB Filters with Short-Circuited Stubs. 12.2 UWB-Coupled Resonator Filters. 12.3 Quasilumped Element UWB Filters. 12.4 UWB Filters Using Cascaded Miniature High- And Lowpass Filters. 12.5 UWB Filters with Notch Band(s). 13 Tunable and Reconfigurable Filters. 13.1 Tunable Combline Filters. 13.2 Tunable Open-Loop Filters without Via-Hole Grounding. 13.3 Reconfigurable Dual-Mode Bandpass Filters. 13.4 Wideband Filters with Reconfigurable Bandwidth. 13.5 Reconfigurable UWB Filters. 13.6 RF MEMS Reconfigurable Filters. 13.7 Piezoelectric Transducer Tunable Filters. 13.8 Ferroelectric Tunable Filters. Appendix: Useful Constants and Data. A.1 Physical Constants. A.2 Conductivity of Metals at 25 C (298K). A.3 Electical Resistivity rho in 10-8 m of Metals. A.4 Properties of Dielectric Substrates. Index.

4,774 citations

••

[...]

TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.

Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

3,958 citations

•

[...]

TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,639 citations